1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
access type Open Access

A Comparative Study of Un-Doped ZnO and in Doping ZnO Thin Films with Various Concentrations, Subjected to Appropriate UHV Treatment and Characterized by Sensitive Spectroscopy Techniques XPS, AES, Reels and PL

Published Online: 12 Mar 2022
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 01 Nov 2021
Accepted: 22 Feb 2022
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
Abstract

In this study, we use complementary and sensitive experimental techniques XPS (X-rays Photoelectron Spectroscopy), AES (Auger Electron Spectroscopy, REELS (Reflection Electron Energy-Loss Spectroscopy) and PL (photoluminescence) to investigate and compare the chemical, structure, electronic and optical properties of Un-doped ZnO (UZO) and Indium-doped ZnO (IZO) (4% In; 6% In) thin films. Spray method is used for the growth of these thin films on Si substrate. A treatment process UHV (Ultra-High -Vacuum: Ar+ sputtering followed by checked successive heating until 650°C) is performed. XPS and AES results allow to confirm the clean state of samples and the incorporation of indium into the ZnO matrix to form chemical species of (In-O-Zn) type. The recorded REELS spectra at different primary energies and the PL measurements justify that the UHV treatment plays an important role to improve the physical structure of IZO (6% In).

Keywords

[1] A. Mang, K. Reimann, Solid state communications, 94.4 (1995): 251-254.10.1016/0038-1098(95)00054-2 Search in Google Scholar

[2] K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist, A. Hagfeldt, Solar Energy Mater, Solar Cells 73 (2002) 51–5810.1016/S0927-0248(01)00110-6 Search in Google Scholar

[3] J.C. Fan, K. Sreekanth, Z. Xie, S. Chang, K.V. Rao, p-Type ZnO materials: theory, growth, properties and devices, Prog. Mater. Sci. 58, 874–985 (2013) Search in Google Scholar

[4] T.K. Gupta, J. Am. Ceram. Soc. 73 (1990) 1817–184010.1111/j.1151-2916.1990.tb05232.x Search in Google Scholar

[5] Z.L. Wang, J.H. Song, Science 312 (2006) 242–24610.1126/science.1124005 Search in Google Scholar

[6] N. Izyumskaya, A. Tahira, Z. H. Ibupoto, N. Lewinski, V. Avrutin, Ü. Özgür, et al, Review, ECS Journal of Solid State Science and Technology, 6.8 (2017) Q84-Q10010.1149/2.0291708jss Search in Google Scholar

[7] K.M. Sandeep, Shreesha Bhat and S.M. Dharmaprakash, Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films, Journal of Physical and Chemistry of Solids, http://dx.doi.org/10.1016/j.jpcs.2017.01.00310.1016/j.jpcs.2017.01.003 Search in Google Scholar

[8] K.Ramamoorthy, K.Kumar, R.Chandramohan, K.Sankaranarayanan, Review on Mater. Sci. Eng., B126 (1) (2006)1–15 Search in Google Scholar

[9] G.C. Xie, L. Fang, L.P. Peng, G.B. Liu, H.B. Ruan, F. Wu, C.Y. Kong, Effect of In-doping on the optical constants of ZnO thin films, Physics Procedia 32 (2012) 651 – 65710.1016/j.phpro.2012.03.614 Search in Google Scholar

[10] K. Khalid Mahmood, A. Ahmad, S.W. Mehran. Surf. Coating. Technol. 352 (2018) 231-23710.1016/j.surfcoat.2018.08.039 Search in Google Scholar

[11] A. Singh, S. Chaudhary, D. K Pandya, Acta Materialia 111 (2016) 1-910.1016/j.actamat.2016.03.012 Search in Google Scholar

[12] K. Ellmer, R. Mientus, Thin solid films, 516.14 (2008) 4620-4627 Search in Google Scholar

[13] Handbook of Transparent Conductors 2011th Edition, David S. Ginley, Hideo Hosono, David C. Paine, Kindle Edition Springer Science & Business Media (2010) Search in Google Scholar

[14] Flat Panel Display Manufacturing, Jun Souk, Shinji Morozumi, John Wiley & Sons (2018) Search in Google Scholar

[15] K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist, A. Hagfeldt, Solar Energy Mater, Solar Cells 73 (2002) 51–5810.1016/S0927-0248(01)00110-6 Search in Google Scholar

[16] K. Ramamoorthy, K. Kumar, R. Chandramohan, K. Sankaranarayanan, Materials Science and Engineering, B 126.1 (2006) 1-15 Search in Google Scholar

[17] D. Kim, I. Yun, H. Kim, Appl. Phys, 10 (2010) 459–462 Search in Google Scholar

[18] M. Shaheera, K.G. Girija, Manmeet Kaur, V.Geetha, A.K. Debnath, R.K. Vatsa, K. P. Muthe, S.C. Gadkari, Optical Materials 101 (2020) 109723. Search in Google Scholar

[19] A. P. Rambu, D. Sirbu, A.V. Sandu, G. Prodan, V. Nica, Bull Mater.Sci. 36 (2013) 231–23710.1007/s12034-013-0471-2 Search in Google Scholar

[20] C., Falcony, M.A. Aguilar-Frutis, M. García-Hipólito, Spray Pyrolysis Technique; High-K Dielectric Films and Luminescent Materials: A Review, Micromachines 2018, 9, 414.10.3390/mi9080414618758730424347 Search in Google Scholar

[21]. J. Wang, Y. Mei, X. Lu, X. Fan, D. Kang, P. Xu, T. Tan, Applied Surface Science, 387 (2016) 779-783 Search in Google Scholar

[22]. W. Wang, Q. Feng, K. Jiang, J. Huang, X. Zhang, W. Song, R. Tan. Applied Surface Science, 257.9 (2011) 3884-3887. Search in Google Scholar

[23] L. J. Sun, D. K. He, X.Q. Xu, Z. Zhong, X.P Wu, B.X. Lin, Z.X. Fu. Chinese Physics Letters, 27, 12 (2010) 126802 Search in Google Scholar

[24] J. S. Meena, M.C. Chu, Y.C. Chang, H.C. You, R. Singh, P.T. Liu, et al,. Journal of Materials Chemistry C, 1, 40 (2013) 6613-6622 Search in Google Scholar

[25] M. Caglar, S. Ilican, Y. Caglar, Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method, Journal of Optoelectronics and Advanced Materials Vol. 10, No. 10, October 2008, p. 2578 – 2583. Search in Google Scholar

[26] M. N. Jung, E. S. Lee, T. I. Jeon, et al., Journal of alloys and compounds, 481,1-2 (2009) 649-653 Search in Google Scholar

[27] M. Jacquemin, M. J. Genet, E. M. Gaigneaux, D. P. Debecker, Chem Phys Chem, 14, 15 (2013) 3618-3626 Search in Google Scholar

[28] M. Guezzoul, M. Bouslama, A.Ouerdane, et al., Chemical, morphological and optical properties of undoped and Cu-doped ZnO thin films submitted to UHV treatment, Applied Surface Science (2020) 146302.10.1016/j.apsusc.2020.146302 Search in Google Scholar

[29] Sirshendu Ghosh, Manas Saha and S. K. De, Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals, Nanoscale, https://doi10.1039/C3NR05608B Search in Google Scholar

[30] Z. Zhu, B. Li, J. Wen, Z. Chen, Z. Chen, et al., Indium-doped ZnO horizontal nanorods for high on-current field effect transistors, RSC advances, 7.87 (2017) 54928-54933 Search in Google Scholar

[31] Khalid Mahmood, Seung Bin Park and Hyung Jin Sung Yu, Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures, J. Mater. Chem. C, 2013,1, 3138-3149.10.1039/C3TC00082F Search in Google Scholar

[32] Arpan Kumar Nayak, Seungwon Lee, Young ku Sohnand Debabrata Pradhan, Nanotechnology, 26 (2015) 485601 Search in Google Scholar

[33] Crist, P. D. B. V. Handbook of The Elements and Native Oxides (XPS International, Inc.1999), Vols. 1 Search in Google Scholar

[34] Mahmoud Bedrouni, Bachir Kharroubi, Abdellah Ouerdane, M’hammed Bouslama, M’hamed Guezzoul, Yves Caudano, Kada Belmokhtar Bensassi, Mohammed Bousmaha, Mohamed Amine Bezzerrouk, Azzeddine Mokadem and Mahfoud Abdelkrim, Effect of indium incorporation, stimulated by UHV treatment, on the chemical, optical and electronic properties of ZnO thin film, Optical Materials, https://doi.org/10.1016/j.optmat.2020.11056010.1016/j.optmat.2020.110560 Search in Google Scholar

[35] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corporation (1992) Search in Google Scholar

[36] A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Excitonic fine structure and recombination dynamics in single-crystalline ZnO, Physical Review B,70, 19 (2004) 195207.10.1103/PhysRevB.70.195207 Search in Google Scholar

[37] K. Hamaida, M. Bouslama, M. Ghaffour, F. Besahraoui, et al., Growth of In2O3 on In Metal and on InSb by the Electron Irradiation, Surface Review and Letters 19.06 (2012) 125006610.1142/S0218625X12500667 Search in Google Scholar

[38] S. Vempati, J. Mitra, P. Dawson, Nanoscale research letters, 7.1 (2012) 470.10.1186/1556-276X-7-470352202822908931 Search in Google Scholar

[39] Ü. Özgür, Y. I. Alivov, C. Liu, A.Teke, M. A. Reshchikov, S. Doğan, H. Morkoç, 25 Journal of Applied Physics, 98, 4 (2005) 1110.1063/1.1992666 Search in Google Scholar

[40] B. Lin, Z. Fu, Y. Jia, Applied physics letters, 79, 7 (2001) 943-94510.1063/1.1394173 Search in Google Scholar

[41] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79 (1996) 7983–799010.1063/1.362349 Search in Google Scholar

[42] B. El Filali, J.A. Jaramillo Gomez, T.V. Torchynska, J.L. Casas Espinola, L. Shcherbyna, Band-edge emission, defects, morphology and structure of in-doped ZnO nanocrystal films, Optical Materials 89 (2019) 322–32810.1016/j.optmat.2019.01.056 Search in Google Scholar

[43] H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20 (2010) 561–572.10.1002/adfm.200901884 Search in Google Scholar

[44] F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 6 (2014) 10224–10234.10.1039/C4NR01887G25056654 Search in Google Scholar

[45] F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn et al. J. Appl. Phys. 95, 4772 (2004)10.1063/1.1690091 Search in Google Scholar

[46] F. Stavale, N. Nilius, H. J. Freund. The Journal of Physical Chemistry Letters (2013) 4, 22, 3972-397610.1021/jz401823c Search in Google Scholar

[47] Y. Xu, B. Bo, X. Gao, Z. Qiao, Crystals 9, 5 (2019) 236.10.3390/cryst9050236 Search in Google Scholar

[48] A. B. Djurišić, A. M. C. Ng, X. Y. Chen. Progress in quantum electronics, 34, 4 (2010) 191-259.10.1016/j.pquantelec.2010.04.001 Search in Google Scholar

[49] H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls, Funct. Mater. 20 (2010) 561–57210.1002/adfm.200901884 Search in Google Scholar

[50] P. H. Carey, F. Ren, D. C. Hays, B. Gila, S. J. Pearton, S. Jang, A. Kuramata, Applied Surface Science, 422 (2017) 179-183.10.1016/j.apsusc.2017.05.262 Search in Google Scholar

[51] J. Wang, Q. Li, R. F. Egerton, Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy, Micron 38, 4 (2007) 346-353.10.1016/j.micron.2006.06.003 Search in Google Scholar

[52] A.M. Konovalov, Yu.M. Krynko, Yu.S. Musatenko, M.G. Nakhodkin, Journal of Electron Spectroscopy and Related Phenomena 133 (2003) 27–3710.1016/S0368-2048(03)00138-5 Search in Google Scholar

[53] Z. H. Zhang, X. Y. Qi, J. K. Jian, X. F. Duan. Micron, 37, 3 (2006) 22923310.1016/j.micron.2005.10.016 Search in Google Scholar

[54] E. Fazio, A. M. Mezzasalma, G. Mondio, T. Serafino, F. Barreca, F. Caridi, Applied Surface Science, 257, 6 (2011) 2298-2302.10.1016/j.apsusc.2010.09.092 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo