1. bookVolume 63 (2021): Issue 1 (December 2021)
Journal Details
First Published
15 Dec 2012
Publication timeframe
1 time per year
access type Open Access

Correlation of Rheological Properties of Ferrofluid-Based Magnetorheological Fluids Using Some Dimensionless Numbers Defined in Magnetorheology

Published Online: 22 Dec 2021
Volume & Issue: Volume 63 (2021) - Issue 1 (December 2021)
Page range: 129 - 144
Received: 02 Oct 2021
Accepted: 25 Oct 2021
Journal Details
First Published
15 Dec 2012
Publication timeframe
1 time per year

In this paper we investigated from rheological point of view some samples of ferrofluid-based magnetorheological fluids (FF-MRFs) with different volumic fractions of Fe microparticles, but with the same ferrofluid used as carrier liquid. We correlated the dimensionless flow curves, measured at different values of the magnetic field induction, using either Mason number or Casson number. It has been shown that in this approach, data sets measured under different conditions collapse on a single curve. This master curve is useful for controlling the concentration of Fe particles, so that the magnetic and magnetorheological properties of FF-MRF to be adapted to obtain high-performance applications.


[1] Klingenberg D.J., Magnetorheology: applications and challenges, AIChE J 47(2):246–249 (2001), Doi: 10.1002/aic.690470202.10.1002/aic.690470202 Search in Google Scholar

[2] Carlson J.D. and Jolly M.R., MR Fluid, foam and elastomer devices, Mechatronics 10:555–569 (2000), Doi: 0.1016/S0957-4158(99)00064-1. Search in Google Scholar

[3] de Vicente J., Klingenberg D.J., Hidalgo-Álvarez R., Magnetorheological fluids: a review, Soft Matter 7:3701–3710 (2011), doi:10.1039/c0sm01221a.10.1039/c0sm01221a Search in Google Scholar

[4] Portillo M.A., Lozada P.S.A., Figueroa I.A., Suarez M.A., Delgado A.V.C. and Iglesias G.R., Synergy between magnetorheological fluids and aluminum foams: Prospective alternative for seismic damping, Journal of Intelligent Material Systems and Structures, 27:872–879 (2016), Doi: 10.1177/1045389X15596624.10.1177/1045389X15596624 Search in Google Scholar

[5] Szakal R., Susan-Resiga D., Muntean S., Vékás L., Magnetorheological Fluids Flow Modelling Used in a Magnetorheological Brake Configuration, Proc. of 2019 International Conference on ENERGY and ENVIRONMENT (CIEM), Timișoara, Romania, Article No. 19228489, pg. 403-407 (2019 a), Doi: 10.1109/CIEM46456.2019.8937624.10.1109/CIEM46456.2019.8937624 Search in Google Scholar

[6] Szakal R.-A., Bosioc A.I., Muntean S., Susan-Resiga D., Vékás L, Experimental Investigations of a Magneto-Rheological Brake Embedded in a Swirl Generator Apparatus, capitol in Silva L. (eds) Materials Design and Applications II. Advanced Structured Materials, Springer, 98:265-279 (2019 b), Doi:10.1007/978-3-030-02257-0_20.10.1007/978-3-030-02257-0_20 Search in Google Scholar

[7] Carlson J.D. and Sproston J.L., Controllable Fluids in 2000 - Status of ER and MR Fluid Technology, Proceedings of Actuator 2000-8th Int. Conf on New Actuators, Bremen, Germany, 126-130 (2000). Search in Google Scholar

[8] Liu J., Flores G.A. and Sheng R., In-vitro investigation of blood embolization in cancer treatment using magnetorheological fluids, Journal of Magnetism and Magnetic Materials, 225(1-2):209-217 (2001), Doi: 10.1016/S0304-8853(00)01260-9.10.1016/S0304-8853(00)01260-9 Search in Google Scholar

[9] Susan-Resiga D. and Barvinschi P., Nano-microstructured magnetorheological fluids and engineering applications, Romanian Journal of Technical Sciences – Applied Mechanics, 65(2): 87-121 (2020). Search in Google Scholar

[10] Susan-Resiga, Aspecte ale comportării reologice a fluidelor magnetizabile, Teză de abilitare, Universitatea de Vest din Timişoara (2020). Search in Google Scholar

[11] Skjeltorp A.T., One- and Two-Dimensional Crystallization of Magnetic Holes, Physical Review Letters 51:2306–2309 (1983), Doi: 10.1103/PhysRevLett.51.2306.10.1103/PhysRevLett.51.2306 Search in Google Scholar

[12] Popplewell J., Rosensweig R.E., Magnetorheological fluid composites, J. Phys. D. Appl.Phys., 29(9):2297-2303 (1996), Doi: 10.1088/0022-3727/29/9/011.10.1088/0022-3727/29/9/011 Search in Google Scholar

[13] de Gans B.J., Duin N.J., van den Ende D., and Mellema J., The influence of particle size on the magnetorheological properties of an inverse ferrofluid, Journal of Chemical Physics 113(5):2032-2042 (2000), Doi: 10.1063/1.482011.10.1063/1.482011 Search in Google Scholar

[14] van Ewijk G., Phase behavior of mixtures of magnetic colloids and non-adsorbing polymer, PhD thesis, University of Utrecht (2001). Search in Google Scholar

[15] de Vicente J., López-López M.T., González-Caballero F., Durán J.D.G., Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles, Journal of Rheology 47:1093 (2003), Doi: 0.1122/1.1595094. Search in Google Scholar

[16] López-López M.T., Zugaldía A., González-Caballero F. and Durán J.D.G., Sedimentation and redispersion phenomena in iron-based magnetorheological fluids, Journal of Rheology 50(4):543-560 (2006 a), Doi: 10.1122/1.2206716.10.1122/1.2206716 Search in Google Scholar

[17] Choi C.-I., Xie L., Wereley N.M., Testing and analysis of magnetorheological fluid sedimentation in a column using a vertical axis inductance monitoring system, Smart Matererials and Structures 25(4):04LT01 (2016), Doi: 0.1088/0964-1726/25/4/04LT01. Search in Google Scholar

[18] Socoliuc V., Vékás L. and Turcu R., Magnetically induced phase condensation in an aqueous dispersion of magnetic nanogels, Soft Matter 9:3098–3105 (2013), Doi: 10.1039/C2SM27262H.10.1039/c2sm27262h Search in Google Scholar

[19] Rosenfeld N.C., Wereley N.M., Radhakrishnan R. and Sudarshan T., Behavior of Magnetorheological Fluids Utilizing Nanopowder Iron, International Journal of Modern Physics B 16(17–18):2392–2398 (2002), Doi: 10.1142/S0217979202012414.10.1142/S0217979202012414 Search in Google Scholar

[20] Wereley N.M., Chaudhuri A., Yoo J.-H., John S., Kotha S., Suggs A., Radhakrishnan R., Love B.J., Sudarshan T.S., Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale, Journal of Intelligent Material Systems and Structures 17(5):393–401 (2006), Doi:10.1177/1045389X06056953.10.1177/1045389X06056953 Search in Google Scholar

[21] Morillas J.R., Bombard J.F. and de Vicente J., Enhancing magnetorheological effect using bimodal suspensions in the single-multidomain limit, Smart Materials and Structures 27(7):07LT01 (2018), Doi: 10.1088/1361-665X/aac8ae.10.1088/1361-665X/aac8ae Search in Google Scholar

[22] Lim S.T., Cho M.S., Jang I.B., Choi H.J., Jhon M.S., Magnetorheology of Carbonyl-Iron Suspensions With Submicron-Sized Filler, IEEE Transactions on Magnetics 40(4):3033 – 3035 (2004), Doi: 10.1109/TMAG.2004.830400.10.1109/TMAG.2004.830400 Search in Google Scholar

[23] de Vicente J., Segovia-Gutiérrez J.P., Andablo-Reyes E., Vereda F., Dynamic rheology of sphere- and rod-based magnetorheological fluids, The Journal of Chemical Physics 131(19):194902 (2009), Doi: 10.1063/1.3259358.10.1063/1.325935819929071 Search in Google Scholar

[24] Vereda F., de Vicente J., Segovia-Gutiérrez J.P., Hidalgo-Alvarez R., Average particle magnetization as an experimental scaling parameter for the yield stress of dilute magnetorheological fluids, Journal of Physics D: Applied Physics 44(42):425002 (2011), Doi:10.1088/0022-3727/44/42/425002.10.1088/0022-3727/44/42/425002 Search in Google Scholar

[25] Shah K., Phu D.X., Seong M.-S., Upadhyay R.V. and Choi S.-B., A low sedimentation magnetorheological fluid based on platelike iron particles, and verification using a damper test, Smart Materials and Structures 23(2):027001 (2014), Doi: 10.1088/0964-1726/23/2/027001.10.1088/0964-1726/23/2/027001 Search in Google Scholar

[26] Susan-Resiga D. and Vékás L., From high magnetization ferrofluids to nano-micro composite magnetorheological fluids: properties and applications, Romanian Reports in Physics 70:501 (2018). Search in Google Scholar

[27] López-López M.T., de Vicente J., Bossis G., González-Caballero F., and Durán J.D.G., Preparation of stable magnetorheological fluids based on extremely bimodal iron– magnetite suspensions, Journal of Materials Research 20 (4), 874–881 (2005), Doi: 10.1557/JMR.2005.0108.10.1557/JMR.2005.0108 Search in Google Scholar

[28] López-López M.T., Kuzhir P., Lacis S., Bossis G., González-Caballero F., and Durán J.D.G., Magnetorheology for suspensions of solid particles dispersed in ferrofluids, Journal of Physics: Condensed Matter 18(38):S2803–S2813 (2006 b), Doi: 0.1088/0953-8984/18/38/S18.10.1088/0953-8984/18/38/S18 Search in Google Scholar

[29] Yang Y., Li L. and Chen G., Static yield stress of ferrofluid-based magnetorheological fluids, Rheol. Acta 48(4):457–466 (2009), Doi: 0.1007/s00397-009-0346-z.10.1007/s00397-009-0346-z Search in Google Scholar

[30] Marinică O., Susan-Resiga D., Bălănean F., Vizman D., Socoliuc V., Vékás L., Nanomicrocomposite magnetic fluids: Magnetic and magnetorheologica levaluation for rotating seal and vibration damper applications, Journal of Magnetism and Magnetic Materials 406:134–143 (2016), Doi: 10.1016/j.jmmm.2015. Search in Google Scholar

[31] Susan-Resiga D. and Vékás L., Ferrofluid-based magnetorheological fluids: Tuning the properties by varying the composition at two hierarchical levels, Rheologica Acta 55(7), 581–595 (2016), Doi: 10.1007/s00397-016-0931-x.10.1007/s00397-016-0931-x Search in Google Scholar

[32] Susan-Resiga D. and Vékás L., Ferrofluid based composite fluids: Magnetorheological properties correlated by Mason and Casson numbers, Journal of Rheology 61(3), 401 - 408 (2017), Doi: 10.1122/1.4977713.10.1122/1.4977713 Search in Google Scholar

[33] Susan-Resiga D. and Barvinschi P., Correlation of rheological properties of ferrofluid-based magnetorheological fluids using the concentration-magnetization superposition, Journal of Rheology 62(3), 739 - 752 (2018), Doi: 10.1122/1.5017674.10.1122/1.5017674 Search in Google Scholar

[34] Bingham E. C. and Green H., Plastic Material and not a Viscous Liquid; The Measurement of its Mobility and yield value. Proc. Amer. Soc. Test Mater (1919). Search in Google Scholar

[35] Ruiz-López J. A., Fernández-Toledano J. C., Hidalgo-Alvarez R., J. de Vicente, Testing the mean magnetization approximation, dimensionless and scaling numbers in magnetorheology, Soft Matter, 12, 1468 - 1476 (2016). Search in Google Scholar

[36] Klingenberg D. J., Ulicny J. C., Golden M. A., Mason numbers for magnetorheology, Journal of Rheology, 51(5), 883 - 893 (2007).10.1122/1.2764089 Search in Google Scholar

[37] Sherman S.G., Becnel A.C., Wereley N.M., Relating Mason number to Bingham number in magnetorheological fluids, Journal of Magnetism and Magnetic Materials, 380, 98-104 (2015). Search in Google Scholar

[38] Vălu Gh. O., Aspecte ale magnetoreologiei fluidelor magnetizabile, Lucrare de licență, Universitatea de Vest, 2020. Search in Google Scholar

[39] Pham V. and Mitsoulis E., Entry and Exit Flows of Casson Fluids, The Canadian Journal of Chemical Engineering 72(6):1080 – 1084 (1994), Doi: 10.1002/cjce.5450720619.10.1002/cjce.5450720619 Search in Google Scholar

[40] Casson N., A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type, In: Mill C.C., Ed., Rheology of Disperse Systems, Pergamon Press, Oxford, 84-104 (1959). Search in Google Scholar

[41] Bica D., Potencz I., Vékás L., Giula G., and Potra (Balanean) F., Procedure to obtain magnetic fluids for seals, Romanian Patent No. RO 115533:B1 (2000). Search in Google Scholar

[42] Laun H. M., Schmidt G., Gabriel C., and Kieburg C., Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations, Rheologica Acta 47(9), 1049–1059 (2008).10.1007/s00397-008-0305-0 Search in Google Scholar

[43] Shulman Z.P., Kordonskii V.I., Zaltsgendler E.A., Prokhorov I.V., Khusid B.M., and Demchuk S.A., Dynamic and physical properties of ferrosuspensions with a structure rearranged by an external magnetic field, Magnetohydrodynamics 20, 354–361 (1984). Search in Google Scholar

[44] Bossis G., Lemaire E., Volkova O., and Clercx H., Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models, Journal of Rheology 41, 687–704 (1997), Doi: 10.1122/1.550838.10.1122/1.550838 Search in Google Scholar

[45] Gómez-Ramírez A., Kuzhir P., Lopez-Lopez M.T., Bossis G., Meunier A., and Duran J.D.G., Steady shear flow of magnetic fiber suspensions: Theory and comparison with experiments, Journal of Rheology 55, 43–67 (2011), Doi: 10.1122/1.3523477.10.1122/1.3523477 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo