Nickel sulfide (NiS) thin film has been deposited on glass substrates by spray-pyrolysis at 325 ± 5 °C. The precursor aqueous solution was synthetized using hexahydrated nickel nitrates and thiourea. The structural, morphological, optical and electrical properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and four probes electrical measurements. The XRD analysis confirmed the hexagonal structure of NiS thin film, which was found to crystalize along [010] direction with an average crystallites size of 10.5 nm. The lattice parameters are a = b = 3.420 Å and c = 5.300 Å in the space group P63/mmc. The optical properties of the films were investigated through the transmittance and the reflectance measurements. The results revealed that the material exhibits a direct optical band gap of 1.03 eV. The elementary composition analysis confirmed the presence of Ni and S with a stoichiometry ratio (Ni/S) of 1.05. The morphology analysis revealed a homogenous crack-free, compact appearance and a granular surface in all scanned areas. The average roughness of the surface was 6.48 nm. On the other hand, the film exhibits a high electrical conductivity ca. 1.10 × 105 S/cm at room temperature. The above results show that the prepared NiS in this study has a good crystallization, dense morphology, good stoichiometric ratio and high conductivity; therefore, it stands as a potential candidate for application in supercapacitors as an electrode material.
Keywords
- NiS
- spray-pyrolysis
- thin films
- optical gap
- conductivity
A Comparative Study of Un-Doped ZnO and in Doping ZnO Thin Films with Various Concentrations, Subjected to Appropriate UHV Treatment and Characterized by Sensitive Spectroscopy Techniques XPS, AES, Reels and PL Structural, Electronic, Elastic, Mechanical, Optical and Thermoelectric Properties of the Chalcogenide Double Perovskites A2GaNbS6 (A = Ca, Sr and Ba): Insights from Density Functional Theory Calculations Theoretical Prediction of Mechanical Properties of BxAl1-XSb Ternary Semiconducting Alloys Elastic Constants of Tetragonal Cu2ZnSnS4 Semiconductor: AB-Initio Calculation