1. bookVolume 62 (2020): Issue 1 (December 2020)
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
access type Open Access

Diffusion Magnetic Resonance Imaging with Applications to Cardiac Muscle: Short Review

Published Online: 16 Dec 2020
Volume & Issue: Volume 62 (2020) - Issue 1 (December 2020)
Page range: 108 - 119
Received: 21 Apr 2020
Accepted: 30 Oct 2020
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
Abstract

This review describes in brief recent magnetic resonance imaging (MRI) methods for assessing cardiac structure in healthy and pathologic state using diffusion-weighted (DW) and diffusion tensor imaging (DTI) approaches. A background on the theory and MR pulse sequences employed in DW/DT imaging is given, along with the calculation of diffusion tensor (D), apparent diffusion coefficient (ADC) and fractional anisotropy (FA). Parametric maps derived from DW/DT images can quantify microstructure alterations due to fibrotic collagen deposition, along with associated changes in cardiac muscle anisotropy. Representative examples of ADC and FA parametric maps are shown from ex vivo high-resolution DT images of explanted healthy and scarred hearts obtained from pre-clinical investigations. Furthermore, examples of fiber tractography demonstrating DTI-based 3D (three-dimensional) reconstruction of fiber directions within the heart are illustrated using advanced open-source software. Lastly, future developments and potential translation of DW/DT methods into routine clinical evaluation for cardiac MR imaging protocols are highlighted.

Keywords

[1] Le Bihan D; Molecular diffusion nuclear MR imaging. Magn. Reson. Q 1991; 7, 1-3010.1002/jmri.1880010103Search in Google Scholar

[2] Thomas DL, Lythgoe MF, Pell GS, Calamante F, Ordidge RJ; The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging; Physics in Medicine and Biology 2000; 45 R9710.1088/0031-9155/45/8/201Search in Google Scholar

[3] P J Basser, C Pierpaoli; Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI; J Magn Reson B 1996 Jun;111(3):209-19.10.1006/jmrb.1996.0086Search in Google Scholar

[4] Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401–407.10.1148/radiology.161.2.3763909Search in Google Scholar

[5] Huisman TA. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma; Eurpean Radiology; 2003; 13: 2283–229710.1007/s00330-003-1843-6Search in Google Scholar

[6] Inano R, Oishi N, Kunieda T, Arakawa Y, Yamao Y, Shibata S, Kikuchi T, Fukuyama H, Miyamoto S; Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading; Neuroimage Clin. 2014 Aug 7; 5: 396-407.10.1016/j.nicl.2014.08.001Search in Google Scholar

[7] Sandrasegaran K, Akisik FM, Lin C, Tahir B, Rajan J, Saxena R, Aisen AM, Value of Diffusion-weighted MRI for Assessing Liver Fibrosis and Cirrhosis; American Journal of Roentgenology, 2009; 193: 1556-1560.10.2214/AJR.09.2436Search in Google Scholar

[8] Steiger P, Barbieri S, Kruse A, Ith M, Thoeny HC; Selection for biopsy of kidney transplant patients by diffusion-weighted MRI; European Radiology; 2017, 27, (10) :4336-4344.10.1007/s00330-017-4814-zSearch in Google Scholar

[9] Song T, Chen WJ, Yang B, Zhao HP, Huang JW, Cai MJ, Dong TD, Li TS; Diffusion tensor imaging in the cervical spinal cord; European Spine Journal; 2011 Mar;20(3):422-8.10.1007/s00586-010-1587-3Search in Google Scholar

[10] Conturo TE, Lori NF, Cull TS, et al: Tracking neuronal fiber pathways in the living human brain; Proc National Acad. Science USA; 1999, 96: 10422-10427.10.1073/pnas.96.18.10422Search in Google Scholar

[11] Mekkaoui C, Huang S, Chen HH, Dai G, Reese TG, Kostis WJ, Thiagalingam A, Maurovich-Horvat P, Ruskin JN, Hoffmann U; Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework; J Cardiovasc Magn Reson; 2012; 14:70.10.1186/1532-429X-14-70Search in Google Scholar

[12] Naumova A and Yarnykh VL; Assessment of the Heart Microstructure: From Mouse to Man; Circulation. 2014 Apr 29; 129(17): 1720–1722.10.1161/CIRCULATIONAHA.114.009221Search in Google Scholar

[13] Axel L: MRI of the microarchitecture of myocardial infarction: are we seeing new kinds of structures? Circ Cardiovasc Imaging. 2009 May; 2(3):169-7010.1161/CIRCIMAGING.109.873372Search in Google Scholar

[14] Wu MT, Su MYM, Huang YL, Chiou KR, MD, et al, Van J. Wedeen Tseng WYI; Sequential changes in myocardial microstructure in patients postmyocardial infarction by DT cardiac MR: correlation with LV structure & function Circ Cardiovasc Imaging 2009, 2: 32-4010.1161/CIRCIMAGING.108.778902Search in Google Scholar

[15] Kim SS, Ko SM, Choi SII, Choi BH, Stillman AE; Sudden cardiac death from structural heart diseases in adults: imaging findings with cardiovascular computed tomography and magnetic resonance; International Journal ofCardiovascular Imaging; 2016 Jun;32 Suppl 1:21-4310.1007/s10554-016-0891-3Search in Google Scholar

[16] Stanisz G; Diffusion MR in biological systems: tissue compartments and exchange; Israel journal of chemistry; 2003, vol 43, issue 1-2, p 33-4410.1560/E0WU-7FFH-31M6-VLYTSearch in Google Scholar

[17] Van Zijl P and Le Bihan D; From the diffusion coefficient to the diffusion tensor; NMR in Biomedicine; 2002, 15: 431-43410.1002/nbm.798Search in Google Scholar

[18] Stejskal EO and Tanner IE: Spin diffusion measurements: spin echoes in the presence of time-dependent field gradient. J. Chem. Phys. 1965, 42; 288-29210.1063/1.1695690Search in Google Scholar

[19] Pop M, Ramanan V, Ghugre N, Morikawa L, Stanisz G, Dick AJ, Wright G: Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium enhancement and diffusion-weighted MR methods; Physics in Medicine and Biology, 58 (15): 5009-5028, 201310.1088/0031-9155/58/15/5009Search in Google Scholar

[20] Matiello J, Basser PJ, Le Bihan D; The b matrix in diffusion tensor echo-planar imaging Magn Res Med 1997; (37) 292-30010.1002/mrm.1910370226Search in Google Scholar

[21] Tristan A, Aja Fernandez S, Westin CF; Least Squares for DT estimation revisited: propagation of uncertainty with Rician & non-Rician signals; Neuroimage, 2012, 15; 59(4): 4032–43.10.1016/j.neuroimage.2011.09.074Search in Google Scholar

[22] Reese TG, Weisskoff RM, Smith RN, Rosen BR, Dinsmore RE, Wedeen VJ. Imaging myocardial fiber architecture in vivo with MR. Magn Reson Med 1995; 34:786–791.10.1002/mrm.1910340603Search in Google Scholar

[23] Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS, Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation; Am. J Physiology; 1998, vol 274 (5) H1627-H163410.1152/ajpheart.1998.274.5.H1627Search in Google Scholar

[25] Edelman RR, Gaa J, Wedeen VJ, Loh E, Hare JM, Prasad P, Li W; In vivo measurement of water diffusion in the human heart. Magn Reson Med 1994, 32:423–428.10.1002/mrm.1910320320Search in Google Scholar

[24] Helm P, Tseng H, L. Younes L, McVeigh ER, and Winslow R: Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure, Magnc Res in Medicine: 2005, 54, 85010.1002/mrm.20622Search in Google Scholar

[26] Jiang H, PCM. van Zijl, Kim J, Pearlson GD, Susumu Mori S; DTIstudio resource program for diffusion tensor computation and fibre bundle tracking; Computer methods and programs in biomedicine; 2006, 81; I06-I1610.1016/j.cmpb.2005.08.004Search in Google Scholar

[27] Pop M, Sermesant M, Lepiler D, Soong A, Crystal E, McVeigh ER, Ayache N, Wright G; Fusion of optical and MRI for evaluation of macroscopic cardiac computer models: a feasibility study; Medical Image Analysis, Vol. 13 (2): 370-380, 200910.1016/j.media.2008.07.002Search in Google Scholar

[28] Pop M, Sermesant M, Liu G, Relan J, Mansi T, Soong A, Truong MV, et al: Construction of 3D MRI-based computer models of pathologic hearts, augmented with histology and optical imaging to characterize the action potential propagation" Medical Image Analysis, 2012, 6(2): 505-523.10.1016/j.media.2011.11.007Search in Google Scholar

[29] Lin P, Martel AL, Camilleri-Newbigging S, Pop M; Co-registered cardiac ex vivo DT images and histological images for fibrosis quantification; Lecture Notes in Computer Science (Springer), vol 12009, pages 3-11, 202010.1007/978-3-030-39074-7_1Search in Google Scholar

[30] Wu EX, Wu Y, Nicholls, Wang J, Liao S, Zhu S, Lau CP, Tse HF: MR DTI study of postinfarct myocardium structural remodelling in a porcine model Magn Res Med, 2007, 687-69510.1002/mrm.21350Search in Google Scholar

[31] Goblot D, Pop M, Siddiqi K; Cartan frame for fiber direction using diffusion tensor imaging DTI in hearts with infarcts; Lecture Notes in Computer Science - Springer, Vol 10124, pp 87-85, 201710.1007/978-3-319-52718-5_10Search in Google Scholar

[32] Wallenberg M, Pop M, Wood MG, Gosh N, Vitkin AI: Comparison of optical polarimetry and diffusion tensor MR imaging to assess myocardial anisotropy; Journal of Innovative Optical Health Sciences (JIOHS), Vol 3 (2): 109-121, 201010.1142/S1793545810000976Search in Google Scholar

[33] Mojica M, Pop M, Sermesant M, Ebrahimi M; Novel atlas of fiber directions from high resolution ex vivo diffusion tensor images of porcine hearts; Computer Methods and Programs in Biomedicine, vol 187, 105200, April 2020 [32]10.1016/j.cmpb.2019.105200Search in Google Scholar

[34] Welsh C, Di Bella E, Hsu E. Higher-order motion-compensation for in vivo cardiac diffusion tensor imaging in rats. IEEE Trans Med Imaging 2015; 34:1843–185310.1109/TMI.2015.2411571Search in Google Scholar

[35] Nguyen CT, Buckberg G, Li D; Magnetic Resonance Diffusion Tensor Imaging Provides New Insights into the Microstructural Alterations in Dilated Cardiomyopathy; Circ Cardiovasc Imaging. 2016 Oct; 9(10): e005593.10.1161/CIRCIMAGING.116.005593Search in Google Scholar

[36] Nguyen C,1 Fan Z,1 Xie Y,1 Pang Y, Speier P, Xiaoming Bi, Kobashigawa J, Li D; in vivo diffusion-tensor mri of the human heart on a 3t clinical scanner: an optimized second order (m2) motion compensated diffusion-preparation Magn Reson Med. 2016 Nov; 76(5): 1354–1363.10.1002/mrm.26380Search in Google Scholar

[37] Stoeck CT, Kalinowska A, von Deuster C, et al. Dual-phase cardiac diffusion tensor imaging with strain correction. PLoS One 2014; 9:e10715910.1371/journal.pone.0107159Search in Google Scholar

[38] Hrabe J, Kaur G, Guilfoyle D Principles and limitations of NMR diffusion measurements; J Med Phys, 2007 Jan-Mar; 32(1): 34–42.10.4103/0971-6203.31148Search in Google Scholar

[39] Huang J, Wang L, Chu C, Liu W, Zhu Y; Accelerating cardiac diffusion tensor imaging combining local low-rank and 3D TV constraint; MAGMA. 2019 Aug;32(4):407-422.10.1007/s10334-019-00747-1Search in Google Scholar

[40] Ferreira P, Martin R, Scott AD, Khalique Z, et al; Automating in vivo cardiac diffusion tensor post-processing with deep learning–based segmentation; Magn Res Med, 2020, 84 (5), 2801-1410.1002/mrm.28294Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo