Along this paper, we study an evolution inclusion governed by the so-called sweeping process. The right side of the inclusion contains a set-valued perturbation, supposed to be the external forces exercised on the system. We prove existence and relaxation results under weak assumptions on the perturbation by taking a truncated Lipschitz condition. These perturbations have non-convex and unbounded values without any compactness condition; we just assume a linear growth assumption on the element of minimal norm. The approach is based on the construction of approximate solutions. The relaxation is obtained by proving the density of the solution set of the original problem in a closure of the solution set of the relaxed one.

Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, General Mathematics