1. bookVolume 57 (2019): Issue 2 (December 2019)
Journal Details
License
Format
Journal
eISSN
1841-3307
First Published
22 Nov 2012
Publication timeframe
2 times per year
Languages
English
Open Access

Recognition of the Simple Groups 2D8((2n)2)

Published Online: 21 Dec 2020
Volume & Issue: Volume 57 (2019) - Issue 2 (December 2019)
Page range: 53 - 60
Journal Details
License
Format
Journal
eISSN
1841-3307
First Published
22 Nov 2012
Publication timeframe
2 times per year
Languages
English

[1] G. Y. Chen, On the structure of Frobenius groups and 2-Frobenius groups, J. Southwest China Normal University, 20 (5), (1995), 485-487 Search in Google Scholar

[2] G. Y. Chen,L.G.He, andJ.H.Xu, A new characterization of sporadic simple groups, Italian Journal of Pure and Applied Mathematics, 30, (2013), 373-392 Search in Google Scholar

[3] G. Y. Chen and L. G. He, A new characterization of L2(q)where q = pn< 125, Italian Journal of Pure and Applied Mathematics, 38, (2011), 125-134 Search in Google Scholar

[4] G. Y. Chen and L. G. He, A new characterization o Simple K4 -group with type L2(p), Advances in Mathematics (China), (2012), doi: 10.11845/sxjz.165b Search in Google Scholar

[5] B. Ebrahimzadeh, A. Iranmanesh, A. Tehranian, and H. Parvizi Mosaed, A Characterization of the Suzuki groups by order and the Largest elements order, Journal of Sciences, Islamic Republic of Iran, 27 (4), (2016), 353-355 Search in Google Scholar

[6] B. Ebrahimzadeh and R. Mohammadyari, A new characterization of projective special unitary groups PSU3(3n), Discussiones Mathematicae General Algebra and Applications, 39, (2019), 35-4110.7151/dmgaa.1305 Search in Google Scholar

[7] B. Ebrahimzadeh, M. Y. Sadeghi, A. Iranmanesh, and A. Tehranian,A new characterization of symplectics groups PSP (8, q), An. S¸tiint¸. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), LXVI (1), (2020), 93-99 Search in Google Scholar

[8] B. Ebrahimzadeh, R. Mohammadyari, and M. Y. Sadeghi,ANewCharacterization of the simple groups C4(q), by its order and the largest order of elements, Acta et Commentationes Universitatis Tartuensis de Mathematica, 23 (2), (2019)10.12697/ACUTM.2019.23.24 Search in Google Scholar

[9] D. Gorenstein, Finite groups, Harper and Row, New York, 1980 Search in Google Scholar

[10] L. G. He and G. Y. Chen, A new characterization of L3(q)(q ≤ 8) and U3(q) (q ≤ 11), J. Southwest Univ. (Natur. Sci.), 27 (33), (2011), 81-87 Search in Google Scholar

[11] W. M. Kantor and A. Seress, Large element orders and the characteristic of Lie-type simple groups, J. Algebra, 322, (2009), 802-83210.1016/j.jalgebra.2009.05.004 Search in Google Scholar

[12] A. Khosravi and B. Khosravi, A new characterization of some alternting and symmetric groups, Int. J. Math. and Math. Sci, (2003), 2863-287210.1155/S0161171203202386 Search in Google Scholar

[13] J. Li, W. Shi, and D. Yu, A characterization of some PGL(2, q) by maximum element orders, Bull.Korean Math.Soc, 52 (6), (2015), 2025-203410.4134/BKMS.2015.52.6.2025 Search in Google Scholar

[14] J. S. Williams, Prime graph components of finite groups, J. Algebra, 69 (2), (1981), 487-51310.1016/0021-8693(81)90218-0 Search in Google Scholar

[15] D. Yu, J. Li, G. Chen, L. Zhang, and W. J. Shi, A new characterization of simple K5-groups of type L3(p), Bulletin of the Iranian Mathematical Society, 45 (3), (2019), 771-78110.1007/s41980-018-0164-0 Search in Google Scholar

[16] A. V. Zavarnitsine, Recognition of the simple groups L3(q) by element orders, J. Group Theory, 7 (1), (2004), 81-9710.1515/jgth.2003.044 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo