Open Access

Increasing the order of convergence of multistep methods for solving systems of equations under weak conditions


Cite

[1] I. K. Argyros, Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K.Chui and L. Wuytack, Elsevier Publ. Co., New York, U.S.A, 2007Search in Google Scholar

[2] I. K. Argyros and H. Ren, Improved local analysis for certain class of iterative methods with cubic convergence, Numerical Algorithms, 59, (2012), 505-52110.1007/s11075-011-9501-6Search in Google Scholar

[3] I. K. Argyros, Y. J. Cho, and S. George, Local convergence for some third-order iterative methods under weak conditions, J. Korean Math. Soc., 53 (4), (2016), 781-79310.4134/JKMS.j150244Search in Google Scholar

[4] I. K. Argyros and S. George, Ball convergence of a sixth order iterative method with one parameter for solving equations under weak conditions, Calcolo, DOI 10.1007/s10092-015-0163-ySearch in Google Scholar

[5] A. Cordero, J. Hueso, E. Martinez, and J. R. Torregrosa, A modified Newton-Jarratt’s composition, Numerical Algorithms, 55, (2010), 87-9910.1007/s11075-009-9359-zSearch in Google Scholar

[6] A. Cordero and J. R. Torregrosa, Variants of Newton’s method for functions of several variables, Appl. Math. Comput., 183, (2006), 199-20810.1016/j.amc.2006.05.062Search in Google Scholar

[7] A. Cordero and J. R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas, Appl. Math. Comput., 190, (2007), 686-69810.1016/j.amc.2007.01.062Search in Google Scholar

[8] G. M Grau-Sanchez, A. Grau, and M. Noguera, On the computational efficiency index and some iterative methods for solving systems of non-linear equations, J. Comput. Appl. Math., 236, (2011), 1259-126610.1016/j.cam.2011.08.008Search in Google Scholar

[9] H. H. H. Homeier, A modified Newton method with cubic convergence, the multivariable case, J. Comput. Appl. Math., 169, (2004), 161-16910.1016/j.cam.2003.12.041Search in Google Scholar

[10] H. H. H. Homeier, On Newton type methods with cubic convergence, J. Comput. Appl. Math., 176, (2005), 425-43210.1016/j.cam.2004.07.027Search in Google Scholar

[11] J. S. Kou, Y. T. Li, and X. H. Wang, A modification of Newton method with fifth-order convergence, J. Comput. Appl. Math., 209, (2007), 146-15210.1016/j.cam.2006.10.072Search in Google Scholar

[12] A. N. Romero, J. A. Ezquerro, and M. A. Hernandez, Approximacion de soluciones de algunas equaciones integrals de Hammerstein mediante metodos iterativos tipo. Newton, XXI Congreso de ecuaciones diferenciales y aplicaciones, Universidad de Castilla-La Mancha, 2009Search in Google Scholar

[13] W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, Mathematical Models and Numerical Methods, Ed. by A. N. Tikhonov et al., Banach Center, Warsaw, Poland, 1977, 129-14210.4064/-3-1-129-142Search in Google Scholar

[14] J. R. Sharma and P. K. Gupta, An e cient fifth order method for solving systems of nonlinear equations, Comput. Math. Appl., 67, (2014), 591-60110.1016/j.camwa.2013.12.004Search in Google Scholar

[15] J. F. Traub, Iterative methods for the solution of equations, AMS Chelsea Publishing, 1982Search in Google Scholar

[16] X. Y. Xiao and H. W. Yin, Increasing the order of convergence for iterative methods to solve non-linear systems, Calcolo, DOI10.1007/s10092-015-0149-9Search in Google Scholar

eISSN:
1841-3307
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, General Mathematics