1. bookVolume 10 (2018): Issue 2 (December 2018)
Journal Details
License
Format
Journal
eISSN
2066-7752
First Published
06 Jun 2014
Publication timeframe
2 times per year
Languages
English
Open Access

Integrals of polylogarithmic functions with negative argument

Published Online: 04 Mar 2019
Volume & Issue: Volume 10 (2018) - Issue 2 (December 2018)
Page range: 347 - 367
Received: 08 Aug 2018
Journal Details
License
Format
Journal
eISSN
2066-7752
First Published
06 Jun 2014
Publication timeframe
2 times per year
Languages
English

[1] J. Ablinger, J. Blümlein, Harmonic sums, polylogarithms, special numbers, and their generalizations. Computer algebra in quantum field theory, 1–32, Texts Monogr. Symbol. Comput., Springer, Vienna, 2013.10.1007/978-3-7091-1616-6_1Search in Google Scholar

[2] J. Ablinger, J. Blümlein, C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials, J. Math. Phys., 52 (10) (2011), 102301.10.1063/1.3629472Search in Google Scholar

[3] J. Ablinger, J. Blümlein, C. Schneider, Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms, J. Math. Phys., 54 (98) (2013), 74 pp.10.1063/1.4811117Search in Google Scholar

[4] D. H. Bailey, J. M. Borwein, Computation and structure of character polylogarithms with applications to character Mordell-Tornheim-Witten sums, Math. Comp., 85 (297) (2016), 295–324.10.1090/mcom/2974Search in Google Scholar

[5] J. Blümlein, Algebraic relations between harmonic sums and associated quantities, Comput. Phys. Comm., 159 (1) (2004), 19–54.10.1016/j.cpc.2003.12.004Search in Google Scholar

[6] Blümlein, Johannes Structural relations of harmonic sums and Mellin transforms at weight w = 6. Motives, quantum field theory, and pseudodifferential operators, 167–187, Clay Math. Proc., 12, Amer. Math. Soc., Providence, RI, 2010.Search in Google Scholar

[7] J. Blümlein, D. J. Broadhurst, J. A. M. Vermaseren, The multiple zeta value data mine, Comput. Phys. Comm., 181 (3) (2010), 582–625.10.1016/j.cpc.2009.11.007Search in Google Scholar

[8] D. Borwein, J. M. Borwein, D. M. Bradley, Parametric Euler sum identities, J. Math. Anal. Appl., 316 (1) (2006), 328–338.10.1016/j.jmaa.2005.04.040Search in Google Scholar

[9] J. M. Borwein, D. M. Bradley, D. J. Broadhurst, P. Lison e k, Special values of multiple polylogarithms, Trans. Amer. Math. Soc., 353 (3) (2001), 907–941.10.1090/S0002-9947-00-02616-7Search in Google Scholar

[10] J. M. Borwein, I. J. Zucker, J. Boersma, The evaluation of character Euler double sums, Ramanujan J., 15 (3) (2008), 377–405.10.1007/s11139-007-9083-zSearch in Google Scholar

[11] D. Borwein, J. M. Borwein, R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc., 38 (2) (1995), 277–294.10.1017/S0013091500019088Search in Google Scholar

[12] F. Chavez, C. Duhr, Three-mass triangle integrals and single-valued poly-logarithms, J. High Energy Phys., 2012, no. 11, 114, front matter + 31 pp.10.1007/JHEP11(2012)114Search in Google Scholar

[13] A. I. Davydychev and Kalmykov, M. Yu, Massive Feynman diagrams and inverse binomial sums. Nuclear Phys. B.699 (1-2) (2004), 3–64.10.1016/j.nuclphysb.2004.08.020Search in Google Scholar

[14] A. Devoto, D. W. Duke, Table of integrals and formulae for Feynman diagram calculations, Riv. Nuovo Cimento, 7 (6) (1984), 1–39.10.1007/BF02724330Search in Google Scholar

[15] P. Flajolet, B. Salvy, Euler sums and contour integral representations, Experiment. Math., 7 (1) (1998), 15–35.10.1080/10586458.1998.10504356Search in Google Scholar

[16] P. Freitas, Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums, Math. Comp., 74 (251) (2005), 1425–1440.10.1090/S0025-5718-05-01747-3Search in Google Scholar

[17] A. Hoorfar, Qi Feng, Sums of series of Rogers dilogarithm functions, Ramanujan J., 18 (2) (2009), 231–238.10.1007/s11139-007-9043-7Search in Google Scholar

[18] M. Yu. Kalmykov, O. Veretin, Single-scale diagrams and multiple binomial sums, Phys. Lett. B483 (1–3) (2000), 315–323.10.1016/S0370-2693(00)00574-8Search in Google Scholar

[19] K. S. Kölbig, Nielsen’s generalized polylogarithms, SIAM J. Math. Anal., 17 (5) (1986), 1232–1258.10.1137/0517086Search in Google Scholar

[20] R. Lewin, Polylogarithms and Associated Functions, North Holland, New York, 1981.Search in Google Scholar

[21] T. Nakamura, K. Tasaka, Remarks on double zeta values of level 2, J. Number Theory, 133 (1) (2013), 48–54.10.1016/j.jnt.2012.07.005Search in Google Scholar

[22] A. Sofo, Polylogarithmic connections with Euler sums. Sarajevo, J. Math., 12 (24) (2016), no. 1, 17–32.Search in Google Scholar

[23] A. Sofo, Integrals of logarithmic and hypergeometric functions, Commun. Math., 24 (1) (2016), 7–22.10.1515/cm-2016-0002Search in Google Scholar

[24] A. Sofo, Quadratic alternating harmonic number sums, J. Number Theory, 154 (2015), 144–159.10.1016/j.jnt.2015.02.013Search in Google Scholar

[25] Ce Xu, Yuhuan Yan, Zhijuan Shi, Euler sums and integrals of polylogarithm functions, J. Number Theory, 165 (2016), 84–108. 10.1016/j.jnt.2016.01.025Search in Google Scholar

Recommended articles from Trend MD