Open Access

Comparative Rheological Investigation of Nanocomposites of Surface Charged Superparamagnetic Iron Oxide Nanoparticles with Polyethylene Glycol


Cite

Pelto, J., Heino, V., Karttunen, M., Rytöluoto, I., and Ronkainen, H., “Tribological performance of high density polyethylene (HDPE) composites with low nanofiller loading”, Wear, vol. 460, 203451, Nov. 2020. Search in Google Scholar

Choudhury, A., Bhowmick, A. K., Ong, C., and Soddemann, M., “Effect of various nanofillers on thermal stability and degradation kinetics of polymer nanocomposites”, Journal of Nanoscience and Nanotechnology, vol. 10, no. 8, pp. 5056–5071, Aug. 2010. Search in Google Scholar

Wu, W., Liu, L., Goksen, G., Demir, D., and Shao, P., “Multidimensional (0D-3D) nanofillers: Fascinating materials in the field of bio-based food active packaging”, Food Research International, vol. 157, 111446, Jul. 2022. Search in Google Scholar

Chevigny, C., Dalmas, F., Di Cola, E., Gigmes, D., Bertin, D., Boué, F., and Jestin, J., “Polymer-grafted-nanoparticles nanocomposites: Dispersion, grafted chain conformation, and rheological behavior”, Macromolecules, vol. 44, no. 1, pp. 122–133, Dec. 2011. Search in Google Scholar

Peng, W., Ranganathan, R., Keblinski, P., Akcora, P., and Ozisik, R., “Viscoelastic and dynamic properties of polymer grafted nanocomposites with high glass transition temperature graft chains”, Journal of Applied Physics, vol. 126, no. 19, 195102, Nov. 2019. Search in Google Scholar

Arrigo, R., and Malucelli, G., “Rheological behavior of polymer/carbon nanotube composites: An overview”, Materials, vol. 13, no. 12, 2771, Jun. 2020. Search in Google Scholar

Dobkowski Z., “Application of rheological techniques for investigations of polymer branched structures”, Fluid Phase Equilibria, vol. 152, no. 2, pp. 327–336, Oct. 1998. Search in Google Scholar

Wang, L., Jing, X., Cheng, H., Hu, X., Yang, L., and Huang, Y., “Rheology and crystallization of long-chain branched poly(l-lactide)s with controlled branch length”, Ind. Eng. Chem. Res., vol. 51, no. 33, pp. 10731–10741, Jul. 2012. Search in Google Scholar

Nuryawan A., Abdullah, C. K., Hazwan, C. M., Olaiya, N. G., Yahya, E. B., Risnasari, I., Masruchin, N., Baharudin, M. S., Khalid, H., and Khalil, H. P. S. A., “Enhancement of oil palm waste nanoparticles on the properties and characterization of hybrid plywood biocomposites”, Polymers, vol. 12, no. 5, 1007, Apr. 2020. Search in Google Scholar

Zahedi, M., Tabarsa, T., Ashori, A., Madhoushi, M., and Shakeri, A., “A comparative study on some properties of wood plastic composites using canola stalk, Paulownia, and nanoclay”, Journal of Applied Polymer Science, vol. 129, no. 3, Dec. 2013. Search in Google Scholar

Karak, N., “Fundamentals of nanomaterials and polymer nanocomposites”, chapter 1, Nanomaterials and Polymer Nanocomposites: Raw Materials to Applications, Elsevier, pp. 1–45, 2019. Search in Google Scholar

Yu, W., Wang, J., and You, W., “Structure and linear viscoelasticity of polymer nanocomposites with agglomerated particles”, Polymer, vol. 98, pp. 190–200, Aug. 2016. Search in Google Scholar

Akca, E., and Gursel, A., “A review on the matrix toughness of thermoplastic Materials”, Periodicals of Engineering and Natural Sciences, vol. 3, no. 2, pp. 1–8, Aug. 2015. Search in Google Scholar

Lanfant, N. P., and Alglave H. L., “Manufacturing process of a thermoplastic material part incorporating metal fillers”, Patent FR3111585A1, Jun. 2020. Search in Google Scholar

Mhike, W., Focke, W. W. and Asante, J. K. O., “Rotomolded antistatic and flame-retarded graphite nanocomposites”, Journal of Thermoplastic Composite Materials, vol. 31, no. 4, 089270571771263, Ju. 2017. Search in Google Scholar

Kim, K.-W., Kim, D.-K., Han, W., and Kim, B.-J., “Comparison of the characteristics of recycled carbon fibers/polymer composites by different recycling techniques”, Molecules, vol. 27, 5663, Sep. 2022. Search in Google Scholar

Yang, B., “Swelling of carbon nano-filler modified polydimethylsiloxane”, PhD thesis, University of Alberta, 2018. Search in Google Scholar

Antunes, R. A., de Oliveira, M. C. L., Ett, G., and Ett. W., “Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance”, Journal of Power Sources, vol. 196, no. 6, pp. 2945–2961, Mar. 2011. Search in Google Scholar

Akpan, E. I., Shen, X., Wetzel, B., and Friedrich, K., “Design and synthesis of polymer nanocomposites, Polymer Composites with Functionalized Nanoparticles, Synthesis”, Properties and Applications Micro and Nano Technologies, Elsevier, pp. 47–83, 2019. Search in Google Scholar

Shen, Z., Simon, G. P., and Cheng, Y.-B., “Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites”, Polymer, vol. 43, no. 15, pp. 4251–4260, Jun. 2002. Search in Google Scholar

Chen, Y., Bai, W., Chen, J., Chen, X., Zhao, J., Wei, F., Jian, R., Zheng, X., and Xu, Y., “In-situ intercalation of montmorillonite/urushiol titanium polymer nanocomposite for anti-corrosion and anti-aging of epoxy coatings”, Progress in Organic Coatings, vol. 165, 106738, Apr. 2022. Search in Google Scholar

Di Y., Iannace, S., Maio, E. D., and Nicolais, L., “Nanocomposites by melt intercalation based on polycaprolactone and organoclay”, Journal of Polymer Science Part B: Polymer Physics, vol. 41, pp. 670–678, Feb. 2003. Search in Google Scholar

Mittal, V., and Chaudhry, A. U., “Effect of amphiphilic compatibilizers on the filler dispersion and properties of polyethylene—thermally reduced graphene nanocomposites”, Journal of Applied Polymer, vol. 132, 42484, Jun. 2015. Search in Google Scholar

Martínez-Gómez, A., Quiles-Díaz, S., Enrique-Jimenez, P., Flores, A., Ania, F., Gómez-Fatou, M. A., and Salavagione, H. J., “Searching for effective compatibilizing agents for the preparation of poly(ether ether ketone)/graphene nanocomposites with enhanced properties”, Composites Part A: Applied Science and Manufacturing, vol. 113, pp. 180–188, Oct. 2018. Search in Google Scholar

Patti, A., Acierno, D., and Russi, P., “Influence of filler dispersion and interfacial resistance on thermal conductivity of polypropylene/carbon nanotubes systems”, Proceedings, vol. 1914, 030014, Dec. 2017. Search in Google Scholar

Wood, W., “Processing, wear, and mechanical properties of polyethylene composites prepared with pristine and organosilane-treated carbon nanofibers”, PhD theseis, Washington State University, Dec. 2012. Search in Google Scholar

Musanje, L., and Ferracane, J. L., “Effects of resin formulation and nanofiller surface treatment on the properties of experimental hybrid resin composite”, Biomaterials, vol. 25, no. 18, pp. 4065–4071, Aug. 2004. Search in Google Scholar

Amini, M., Hasheminejad, K., and Montazeri, A., “Engineering the shape memory parameters of graphene/polymer nanocomposites through atomistic simulations: On the effect of nanofiller surface treatment”, Smart Materials and Structures, vol. 31, 025010, Dec. 2021. Search in Google Scholar

Ock, H. G., Ahn, K. H., and Lee, S. J., “Effect of electric field on polymer/clay nanocomposites depending on the affinities between the polymer and clay”, Journal of Applied Polymer Science, vol. 133, 43582, Mar. 2016. Search in Google Scholar

Rozynek, Z., Silva, S. M. D. L., Fossum, J. O., da Silva, G. J., de Azevedo, E. N., Mauroy, H., and Plivelic, T. S., “Organoclay polypropylene nanocomposites under different electric field strengths”, Applied Clay Science, vol. 96, pp. 67–72, Jul. 2014. Search in Google Scholar

Javanbakht, T., Laurent, S., Stanicki, D., and David, E., “Related physicochemical, rheological, and dielectric properties of nanocomposites of superparamagnetic iron oxide nanoparticles with polyethyleneglycol”, Journal of Applied Polymer Science, vol. 137, no. 3, pp. 48280–48289, Aug. 2019. Search in Google Scholar

Tamhane, D., and Anantharaman M. R., “Design and fabrication of a simple and inexpensive measurement probe for the evaluation of thermal conductivity of nanofluids”, Nanofluids, vol. 6, no. 2, pp. 390–396, 2017. Search in Google Scholar

Belosi, F., Ferrari, S., Poluzzi, V., Santachiara, G., and Prodi, F., “Comparison between two different nanoparticle size spectrometers”, Journal of the Air and Waste Management Association, vol. 63, no. 8, pp. 918–925, Aug. 2013. Search in Google Scholar

Javanbakht, T., Laurent, S., Stanicki, D., and Frenette, M., “Correlation between physicochemical properties of superparamagnetic iron oxide nanoparticles and their reactivity with hydrogen peroxide”, Canadian Journal of Chemistry, vol. 98, no. 10, pp. 601–608, Oct. 2020. Search in Google Scholar

Javanbakht, T., Hadian, H., and Wilkinson, K. J., “Comparative study of physicochemical properties and antibiofilm activity of graphene oxide nanoribbons”, Journal of Engineering Sciences, vol. 7, no. 1, pp. C1–C8, Apr. 2020. Search in Google Scholar

Javanbakht, T., “Investigation of rheological properties of graphene oxide and its nanocomposite with polyvinyl alcohol”, Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 7, no. 1-2, pp. 23–32, Apr. 2021. Search in Google Scholar

Javanbakht, T., and David, E., “Rheological and physical properties of a nanocomposite of graphene oxide nanoribbons with polyvinyl alcohol”, Journal of Thermoplastic Composite Matererials, vol. 35, no. 5, 0892705720912767, Mar. 2020. Search in Google Scholar

Javanbakht, T., Laurent, S., Stanicki, D., and Salzmann, I., “Rheological properties of superparamagnetic iron oxide nanoparticles”, Journal of Engineering Sciences, vol. 8, no. 1, pp. C29–C37, Jul. 2021. Search in Google Scholar

Farahnaky, A., Dadfar, S. M. M., and Shahbazi, M., “Physical and mechanical properties of gelatin–clay nanocomposite”, Journal of Food Engineering, vol. 122, pp. 78–83, Feb. 2014. Search in Google Scholar

Zhuravkov, M., and Romanova, N., “Determination of physical and mechanical properties of biomaterials on base of the nanoindentation technologies and fractional order models”, Russian Journal of Biomechanics, vol. 20, no. 1, pp. 5–22, Mar. 2016. Search in Google Scholar

Javanbakht, T., Ghane-Motlagh, B., and Sawan, M., “Comparative study of antibiofilm activity and physicochemical properties of microelectrode arrays”, Microelectronic Engineering, vol. 229, 111305, May 2020. Search in Google Scholar

Ghane-Motlagh, B., Javanbakht, T., Shoghi, F., Wilkinson, K. J., Martel, R., and Sawan, M., “Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells”, Materials Science and Engineering C, vol. 68, pp. 642–650, Nov. 2016. Search in Google Scholar

Javanbakht, T., and Sokolowski, W., “Thiol-ene/acrylate systems for biomedical shape-memory polymers, Shape memory polymers for biomedical applications”, Sawston, Cambridge: Woodhead Publishing, chapter 8, pp. 157–166, 2015. Search in Google Scholar

Sukaryo, S. G., Purnama, A., and Hermawan, H., “Structure and Properties of Biomaterials, Biomaterials and Medical Devices”, Springer, pp. 1–22, 2016. Search in Google Scholar

Djavanbakht, T., Carrier, V., André, J. M., Barchewitz, R., and Troussel, P., “Effets d’un chauffage thermique sur les performances de miroirs multicouches Mo/Si, Mo/C et Ni/C pour le reyonnement X mou”, Journal de Physique IV, vol. 10, no. 10, pp. 281–287, Sep. 2000. Search in Google Scholar

Kuzmin, S. A., Egorova, A. D., Krasilnikov, D. A., and Emelianov, Z. V., “Durability of construction materials modified by polymeric additives”, Procedia Structural Integrity, vol. 20, 2019, pp. 278–283. Search in Google Scholar

Hojjat, M., Etemad, S. G., Bagheri, R., and Thibault, J., “Rheological characteristics of non-Newtonian nanofluids: Experimental investigation”, Int. Commun. Heat Transf, vol. 38, no. 2, pp. 144–148, Feb. 2011. Search in Google Scholar

Chhabra, R. P., Richardson, J. F., “Non-Newtonian Flow and Applied Rheology: Engineering Applications”, Butterworth-Heinemann: Oxford, UK, 2011. Search in Google Scholar

Jamshed, W., Eid, M. R. Aissa, A., Mourad, A., Nisar, K. S., Shahzad, F., Saleel, C. A., and Vijayakumar, V., “Partial velocity slip effect on working magneto non-Newtonian nanofluids flow in solar collectors subject to change viscosity and thermal conductivity with temperature”, PLOS ONE, vol. 16, no. 11, e0259881, Nov. 2021. Search in Google Scholar

Pawanr, S., Tanishk, T., Gulati, A., Garg, G. K., and Routroy, S., “Fuzzy-TOPSIS based multi-objective optimization of machining parameters for improving energy consumption and productivity”, Procedia CIRP, 102, 2021, pp. 192–197. Search in Google Scholar

Javanbakht, T., and Chakravorty, S., “Prediction of human behavior with TOPSIS”, Journal of Fuzzy Extension and Applications, vol. 3, no. 2, pp. 109–125, Apr. 2022. Search in Google Scholar

Midilli, Y. E., and Parshutin, S., “Design of experiments vs. TOPSIS to select hyperparameters of neural attention models in time series prediction”, Information Technology and Management Science, vol. 23, pp. 27–34, Dec. 2020. Search in Google Scholar

Chakraborty, S., “TOPSIS and modified TOPSIS: A comparative analysis”, Decision Analytics Journal, vol. 2, 100021, Mar. 2022. Search in Google Scholar

García, V., Marqués, A. I., Cleofas-Sánchez, L., and Sánchez, J. S., “Model selection for financial distress prediction by aggregating TOPSIS and PROMETHEE rankings”, International Conference on Hybrid Artificial Intelligence Systems, 2016, pp. 524–535. Search in Google Scholar

Newati, S., Singh, V., and Khan, R. A., “Componential modeling led construction of an enzyme biosensor reinforced with iron oxide nanoparticles onto the self-assembled monolayers”, Journal of Bionanoscience, vol. 8, no. 1, Feb. 2014. Search in Google Scholar

Saravanakumar, K, Issac, J. S., Dhanaselvam, J., Rajesh, R., Singh, A. B., and Geetha, K. “Fe3O4/TiO2/graphene hybrid nanocomposite to improve the lifespan of distribution transformers”, International Conference on Electronic Circuits and Signalling Technologies, vol. 2325, 2022, 012016. Search in Google Scholar