Cite

[1] Singh, A. (2015), Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecol. Indic. 57, 128–130. https://doi.org/10.1016/j.ecolind.2015.04.027.10.1016/j.ecolind.2015.04.027 Search in Google Scholar

[2] Teh, S. Y., Koh, H. L. (2016), Climate change and soil salinization: Impact on agriculture, water and food security. Int. J. Agric. For. Plant. 2, 1–9. Available at: https://ijafp.com/issue/volume-2-february-2016/. Search in Google Scholar

[3] Zahra, N., Mahmood, S., Raza, Z. A. (2018), Salinity stress on various physiological and biochemical attributes of two distinct maize (Zea mays L.) genotypes. J. Plant Nutr. 41, 1368–1380. https://doi.org/10.1080/01904167.2018.1452939.10.1080/01904167.2018.1452939 Search in Google Scholar

[4] Ali, A., Abbas, M. N., Maqbool, M. M., Haq, T. U., Mahpara, S., Mehmood, R., Arshad, M. I., Lee, D. J. (2021), Optimizing the various doses of moringa (Moringa oleifera) leaf extract for salt tolerance in maize at seedling stage. Life Sci. J. 7, 18. https://doi.org/10.7537/marslsj180721.07. Search in Google Scholar

[5] Yin, X., Feng, Q., Li, Y., Liu, W., Zhu, M., Xu, G., Zheng, X., Sindikubwabo, C. (2021), Induced soil degradation risks and plant responses by salinity and sodicity in intensive irrigated agro-ecosystems of seasonally-frozen arid regions. J. Hydrol. 603, 127036. https://doi.org/10.1016/j.jhydrol.2021.127036.10.1016/j.jhydrol.2021.127036 Search in Google Scholar

[6] Wang, G., Zhao, Y., Mao, W., Ma, X., Su, C. (2020), QTL analysis and fine mapping of a major QTL conferring kernel size in maize (Zea mays). Front. Genet. 11, 603920. https://doi.org/10.3389/fgene.2020.603920.10.3389/fgene.2020.603920772899133329749 Search in Google Scholar

[7] Chen, L., Li, Y. X., Li, C., Wu, X., Qin, W., Li, X., Jiao, F., Zhang, X., Zhang, D., Shi, Y. et al. (2016), Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biol. 16, 81. https://doi.org/10.1186/s12870-016-0768-6.10.1186/s12870-016-0768-6482886827068015 Search in Google Scholar

[8] Cui, D., Wu, D., Liu, J., Li, D., Xu, C., Li, S., Li, P., Zhang, H., Liu, X., Jiang, C. et al. (2015), Proteomic analysis of seedling roots of two maize inbred lines that differ significantly in the salt stress response. PLoS ONE 10, e0116697. https://doi.org/10.1371/journal.pone.0116697.10.1371/journal.pone.0116697432006725659111 Search in Google Scholar

[9] Maas, E. V., Hoffman, G. J. (1977), Crop salt tolerance – Current assessment. J. Irrig. Drain. Division 103, 115–134. https://doi.org/10.1061/JRCEA4.0001137.10.1061/JRCEA4.0001137 Search in Google Scholar

[10] Jiang, Z., Song, G., Shan, X., Wei, Z., Liu, Y., Jiang, C., Jiang, Y., Jin, F., Li, Y. (2018), Association analysis and identification of ZmHKT1;5 variation with salt-stress tolerance. Front. Plant Sci. 9, 1485. https://doi.org/10.3389/fpls.2018.01485.10.3389/fpls.2018.01485619416030369939 Search in Google Scholar

[11] Wang, W., Vinocur, B., Altman, A. (2003), Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218, 1–14. https://doi.org/10.1007/s00425-003-1105-5.10.1007/s00425-003-1105-514513379 Search in Google Scholar

[12] Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., Hayat, S. (2020), Salinity-induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 156, 64–77. https://doi.org/10.1016/j.plaphy.2020.08.042.10.1016/j.plaphy.2020.08.04232906023 Search in Google Scholar

[13] Abreu, I. A., Farinha, A. P., Negrão, S., Gonçalves, N., Fonseca, C., Rodrigues, M., Batista, R., Saibo, N. J. M., Oliveira, M. M. (2013), Coping with abiotic stress: Proteome changes for crop improvement. J. Proteom. 93, 145–168. https://doi.org/10.1016/j.jprot.2013.07.014.10.1016/j.jprot.2013.07.01423886779 Search in Google Scholar

[14] AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., Abuelsoud, W. (2016), High salinity induces different oxidative stress and antioxidant responses in maize seedlings’, organs. Front. Plant Sci. 7, 276. https://doi.org/10.3389/fpls.2016.00276.10.3389/fpls.2016.00276478187127014300 Search in Google Scholar

[15] Hasanuzzaman, M., Raihan, M., Hossain, R., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., Fujita, M. (2021), Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci. 22, 9326. https://doi.org/10.3390/ijms22179326.10.3390/ijms22179326843072734502233 Search in Google Scholar

[16] Pan, J., Peng, F., Tedeschi, A., Xue, X., Wang, T., Liao, J., Zhang, W., Huang., C. (2020), Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. Bot. Stud. 61, 13. https://doi.org/10.1186/s40529-020-00290-6.10.1186/s40529-020-00290-6716739332307601 Search in Google Scholar

[17] Navada, S., Vadstein, O., Gaumet, F., Tveten, A. K., Spanu, C., Mikkelsen, Ø., Kolarevic, J. (2020), Biofilms remember: Osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms. Water Res. 176, 115732. https://doi.org/10.1016/j.watres.2020.115732.10.1016/j.watres.2020.11573232278921 Search in Google Scholar

[18] Zörb, C., Geilfus, C. M., Dietz, K. J. (2019), Salinity and crop yield. Plant Biol. 21, 31–38. https://doi.org/10.1111/plb.12884.10.1111/plb.1288430059606 Search in Google Scholar

[19] Tiwari, R. S., Picchioni, G. A., Steiner, R. L., Jones, D. C., Hughs, S. E., Zhang, J. (2013), Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton. Euphytica 194, 1–11. https://doi.org/10.1007/s10681-013-0927-x.10.1007/s10681-013-0927-x Search in Google Scholar

[20] Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., Hernandez, J. A. (2017), Plant responses to salt stress: Adaptive mechanisms. Agron. 7, 18. https://doi.org/10.3390/agronomy7010018.10.3390/agronomy7010018 Search in Google Scholar

[21] Billah, M., Rohman, M. M., Hossain, N., Shalim, Uddin, M. (2017), Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. Afr. J. Agric. Res. 12, 1437–1446. https://doi.org/10.5897/AJAR2017.%2012295.10.5897/AJAR2017.12295 Search in Google Scholar

[22] Masuda, M. S., Azad, M. A. K., Hasanuzzaman, M., Arifuzzaman, M. (2021), Evaluation of salt tolerance in maize (Zea mays L.) at seedling stage through morphological characters and salt tolerance index. Plant Physiol. Rep. 26, 419–427. https://doi.org/10.1007/s40502-021-00611-2.10.1007/s40502-021-00611-2 Search in Google Scholar

[23] Hoque, M. M. I., Jun, Z., Guoying, W. (2015), Evaluation of salinity tolerance in maize (Zea mays L.) genotypes at seedling stage. J. BioSci. Biotechnol. 4, 39–49. Search in Google Scholar

[24] Malik, H. N., Malik, S. I., Hussain, M., Chughtai, S. U. R., Javed, H. I. (2005), Genetic correlation among various quantitative characters in maize (Zea mays L.) hybrids. J. Agric. Soc. Sci. 3, 262–265. Search in Google Scholar

[25] Pavlov, J., Delić, N., Marković, K., Crevar, M., Čamdžija, Z., Stevanović, M. (2015), Path analysis for morphological traits in maize (Zea mays L.). Genetika 47, 295–301. https://doi.org/10.2298/GENSR1501295P.10.2298/GENSR1501295P Search in Google Scholar

[26] Shahzad, A., Gul, H., Ahsan, M., Wang, D., Fahad, S. (2022), Comparative genetic evaluation of maize inbred lines at seedling and maturity stages under drought stress. J. Plant Growth Regul. https://doi.org/10.1007/s00344-022-10608-2.10.1007/s00344-022-10608-2 Search in Google Scholar

[27] Raghu, B., Suresh, J., Kumar, S. S., Saidaiah, P. (2011), Character association and path analysis in maize (Zea mays L.). Madras Agric. J. 98, 7–9. Search in Google Scholar

[28] Begum, S., Ahmed, A., Omy, S., Rohman, M., Amiruzzaman, M. (2016), Genetic variability, character association and path analysis in maize (Zea mays L.). Bangladesh J. Agric. Res. 41, 173–182. https://doi.org/10.3329/bjar.v41i1.27682.10.3329/bjar.v41i1.27682 Search in Google Scholar

[29] Aman, J., Bantte, K., Alamerew, S., Sbhatu, D. B. (2020), Correlation and path coefficient analysis of yield and yield components of quality protein maize (Zea mays L.) hybrids at Jimma, western Ethiopia. Int. J. Agron. Article ID: 9651537. https://doi.org/10.1155/2020/9651537.10.1155/2020/9651537 Search in Google Scholar

[30] Sandhu, D., Pudussery, M. V., Kumar, R., Pallete, A., Markley, P., Bridges, W. C., Sekhon, R. S. (2020), Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize. Funct. Integr. Genomics 20, 261–275. https://doi.org/10.1007/s10142-019-00707-x.10.1007/s10142-019-00707-x31522293 Search in Google Scholar

[31] R, Core Team. (2014), R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org/. Search in Google Scholar

[32] Singh, R. K., Chaudhary, B. D. (1985), Biometric methods in quantitative genetics analysis (3rd ed.). Kalyani Publishers: New Delhi. 69–78. Search in Google Scholar

[33] Kown, S. H., Torrie, J. H. (1964), Heritability and inter-relationship among traits of two soybean populations. Crop Sci. 4, 196–198. https://doi.org/10.2135/cropsci1964.0011183X000400020023x.10.2135/cropsci1964.0011183X000400020023x Search in Google Scholar

[34] Dewey, D. R., Lu, K. (1959), Correlation and path coefficient analysis of components of crested wheat grass seed production. Agron. J. 51, 515–518. https://doi.org/10.2134/agronj1959.00021962005100090002x.10.2134/agronj1959.00021962005100090002x Search in Google Scholar

[35] Shrivastava, P., Kumar, R. (2015), Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001.10.1016/j.sjbs.2014.12.001433643725737642 Search in Google Scholar

[36] Jia, C., Wang, F., Yuan, J., Zhang, Y., Zhao, Z., Abulizi, B., Wen, X., Kang, M., Tang, F. (2020), Screening and comprehensive evaluation of rice (Oryza sativa L. subsp. japonica Kato) germplasm resources for nitrogen efficiency in Xinjiang, China. Plant Genet. Resour. 18, 179–189. https://doi.org/10.1017/S1479262120000118.10.1017/S1479262120000118 Search in Google Scholar

[37] Paterniani, E. (1990), Maize breeding in tropics. Crit. Rev. Plant Sci. 9, 125–154. https://doi.org/10.1080/07352689009382285.10.1080/07352689009382285 Search in Google Scholar

[38] Khan, A. A., Rao, S. A., McNilly, T. M. (2003), Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica 131, 81–89. https://doi.org/10.1023/A:1023054706489.10.1023/A:1023054706489 Search in Google Scholar

[39] Eker, S., Comertpay, G., Konuskan, O., Ulger, A. C., Ozturk, L., Cakmak, I. (2006), Effect of salinity stress on dry matter production and ion accumulation in hybrids maize varieties. Turk. J. Agric. For. 30, 365–373. Search in Google Scholar

[40] Hatzig, S., Hanstein, S., Schubert, S. (2010), Apoplast acidification is not a necessary determinant for the resistance of maize in the first phase of salt stress. J. Plant Nutr. Soil Sci. 173, 559–562. https://doi.org/10.1002/jpln.201000117.10.1002/jpln.201000117 Search in Google Scholar

[41] Uddin, M. N., Hanstein, S., Leubner, R., Schubert, S. (2013), Leaf cell-wall components as influenced in the first phase of salt stress in three maize (Zea mays L.) hybrids differing in salt resistance. J. Agron. Crop Sci. 199, 405–415. https://doi.org/10.1111/jac.12031.10.1111/jac.12031 Search in Google Scholar

[42] Uddin, M. N., Hanstein, S., Faust, F., Eitenmüller, P. T., Pitann, B., Schubert, S. (2014), Diferulic acids in the cell wall may contribute to the suppression of shoot growth in the first phase of salt stress in maize. Phytochemistry 102, 126–136. https://doi.org/10.1016/j.phytochem.2014.02.014.10.1016/j.phytochem.2014.02.01424661612 Search in Google Scholar

[43] Katerji, N., Van Hoorn, J. W., Hamdy, A., Karam, F., Mastrorilli, M. (1994), Effect of salinity on emergence and on water stress and early seedling growth of sunflower and maize. Agric. Water Manag. 26, 81–91. https://doi.org/10.1016/0378-3774(94)90026-4.10.1016/0378-3774(94)90026-4 Search in Google Scholar

[44] Katerji, N., van Hoorn, J. W., Hamdy, A., Karam, F., Mastrorilli, M. (1996), Effect of salinity on water stress, growth, and yield of maize and sunflower. Agric. Water Manag. 30, 237–249. https://doi.org/10.1016/0378-3774(95)01228-1.10.1016/0378-3774(95)01228-1 Search in Google Scholar

[45] Turan, M. A., Elkarim, A. H., Taban, N., Taban, S. (2010), Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. Afr. J. Agric. Res. 5, 584–588. https://doi.org/10.5897/AJAR09.677. Search in Google Scholar

[46] Khayatnezhad, M., Gholamin, R. (2011), Effects of salt stress levels on five maize (Zea mays L.) cultivars at germination stage. Afr. J. Biotechnol. 10, 12909–12915. https://doi.org/10.5897/ajb11.1568.10.5897/AJB11.1568 Search in Google Scholar

[47] Ali, F., Ahsan, M., Ali, Q., Kanwal, N. (2017), Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Front. Plant Sci. 8, 1397. https://doi.org/10.3389/fpls.2017.01397.10.3389/fpls.2017.01397557225528878785 Search in Google Scholar

[48] Munns, R. (1993), Physiological processes limiting growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ. 16, 15–24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x.10.1111/j.1365-3040.1993.tb00840.x Search in Google Scholar

[49] Rios-Gonzalez, K., Erdei, L., Lips, S. H. (2002), The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci. 162, 923–930. https://doi.org/10.1016/S0168-9452(02)00040-7.10.1016/S0168-9452(02)00040-7 Search in Google Scholar

[50] Qu, C., Liu, C., Gong, X., Li, C., Hong, M., Wang, L., Hong, F., 2012. Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress. Environ. Exp. Bot. 75, 134–141. https://doi.org/10.1016/j.envexpbot.2011.08.019.10.1016/j.envexpbot.2011.08.019 Search in Google Scholar

[51] Szalai, G., Janda, T. (2009), Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J. Agron. Crop Sci. 195, 165–171. https://doi.org/10.1111/j.1439-037x.2008.00352.x.10.1111/j.1439-037X.2008.00352.x Search in Google Scholar

[52] Pitann, B., Schubert, S., Mühling, K. H., 2009. Decline in leaf growth under salt stress is due to an inhibition of H+ pumping activity and increase in apoplastic pH of maize leaves. J. Plant Nutr. Soil Sci. 172, 535–543. https://doi.org/10.1002/jpln.200800349.10.1002/jpln.200800349 Search in Google Scholar

[53] Wakeel, A., Sümer, A., Hanstein, S., Yan, F., Schubert, S. (2011), In vitro effect of Na+/K+ ratios on the hydrolytic and pumping activity of the plasma membrane H+-ATPase from maize (Zea mays L.) and sugar beet (Beta vulgaris L.) shoot. Plant Physiol. Biochem. 49, 341–345. https://doi.org/10.1016/j.plaphy.2011.01.006.10.1016/j.plaphy.2011.01.00621282062 Search in Google Scholar

[54] Negrão, S., Schmöckel, S. M., Tester, M. (2017), Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119, 1–11. https://doi.org/10.1093/aob/mcw191.10.1093/aob/mcw191521837227707746 Search in Google Scholar

[55] Shahzad, M., Abbasi, K. Y., Shahzad, A., Zaidi, F. (2019), Effect of glycine betaine on morphological and physiological attributes of tomato (Lycopersicon esculentum L.) cultivars under saline conditions. J. Hort. Plant Res. 8, 22–29. https://doi.org/10.18052/www.scipress.com/JHPR.8.22.10.18052/www.scipress.com/JHPR.8.22 Search in Google Scholar

[56] Giaveno, C. D., Ribeiro, R. V., Souza, G. M., de Oliveira, R. F. (2007), Screening of tropical maize for salt stress tolerance. Crop Breed. Appl. Biotechnol. 7, 304–313.10.12702/1984-7033.v07n03a10 Search in Google Scholar

[57] Chutipaijit, S., Cha-um, S., Sompornpailin, K. (2011), High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica. Aust. J. Crop Sci. 5, 1191–1198. Search in Google Scholar

[58] Mane, A. V., Karadge, B. A., Samant, J. S., 2010. Salinity-induced changes in photosynthetic pigments and polyphenols of Cymbopogon nardus (L.) Rendle. J. Chem. Pharm. Res. 2, 338–347. Search in Google Scholar

[59] Parihar, P., Singh, S., Singh, R., Singh, V. P., Prasad, S. M. (2015), Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 22, 4056–4075. https://doi.org/10.1007/s11356-014-3739-1.10.1007/s11356-014-3739-125398215 Search in Google Scholar

[60] Qiu, N., Lu, Q., Lu, C. (2003), Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol. 159, 479–486. https://doi.org/10.1046/j.1469-8137.2003.00825.x.10.1046/j.1469-8137.2003.00825.x33873362 Search in Google Scholar

[61] Gong, X., Liu, C., Min, Z., Mengmeng, H., Luyang, L., Ling, W., Wang, Y., Cai, J., Gong, S., Hong, F. (2010), Oxidative damages of maize seedlings caused by exposure to a combination of potassium deficiency and salt stress. Plant Soil 340, 443–452. https://doi.org/10.1007/s11104-010-0616-7.10.1007/s11104-010-0616-7 Search in Google Scholar

[62] Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., Xia, G. (2020), How plant hormones mediate salt stress responses. Trends Plant Sci. 25, 1117–1130. https://doi.org/10.1016/j.tplants.2020.06.008.10.1016/j.tplants.2020.06.00832675014 Search in Google Scholar

[63] Falconer, D. S., Mackay, T. F. C. (1996), Introduction to quantitative genetics. Forest Service: Essex, UK. Search in Google Scholar

[64] Ali, Q., Hammad, M., Tahir, N., Ahsan, M., Basra, S. M. A., Farooq, J., Elahi, M. (2011), Correlation and path coefficient studies in maize (Zea mays L.) genotypes under 40% soil moisture contents. Afr. J. Bacteriol. Res. 3, 77–82. https://doi.org/10.5897/JBR.9000016. Search in Google Scholar

[65] Shilpashree, N., Devi, S. N., Manjunathagowda, D. C., Muddappa, A., Abdelmohsen, S. A., Tamam, N., Elansary, H. O., El-Abedin, T. K. Z., Abdelbacki, A. M. M, Janhavi, V. (2021), Morphological characterization, variability and diversity among vegetable soybean (Glycine max L.) genotypes. Plants 10, 671. https://doi.org/10.3390/plants10040671.10.3390/plants10040671806563633807322 Search in Google Scholar

[66] Johnson, H. W., Robinson, H. F., Comstock, R. E. (1955), Estimates of genetic and environmental variability in soybeans. Agron. J. 47, 314–318. https://doi.org/10.2134/agronj1955.00021962004700070009x.10.2134/agronj1955.00021962004700070009x Search in Google Scholar

[67] Bello, O. B., Ige, S. A., Azeez, M. A., Afolabi, M. S., Abdulmaliq, S. Y., Mahamood, J. (2012), Heritability and genetic advance for grain yield and its component characters in maize (Zea mays L.). Int. J. Plant Res. 2, 138–145. https://doi.org/10.5923/j.plant.20120205.01.10.5923/j.plant.20120205.01 Search in Google Scholar

[68] Maas, A. S. (1995), Crop tolerance to saline sprinkling water. Plant Soil 89, 273–284. https://doi.org/10.1007/bf02182247.10.1007/BF02182247 Search in Google Scholar

[69] Ali, Q., Ahsan, M., Saif-ul-Malook, Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., Saleem, M. (2016), Screening for drought tolerance: Comparison of maize hybrids under water deficit condition. Adv. Life Sci. 3, 51–58. Search in Google Scholar

[70] Tanzeel-ur-Rehman, Q. A., Malik, A. (2020), Genetic variability for salt tolerance in maize seedlings. Genet. Mol. Res. 19, gmr16039977.10.54112/bcsrj.v2020i1.16 Search in Google Scholar

[71] Hanson, C. H., Robinson, H. F., Comstock, R. E. (1956), Biometrical studies of yield in segregating populations of Korean lespedeza 1. Agron. J. 48, 268–272. https://doi.org/10.2134/agronj1956.00021962004800060008x.10.2134/agronj1956.00021962004800060008x Search in Google Scholar

[72] Gazal, A., Nehvi, F. A., Lone, A. A., Dar, Z. A. (2017), Assessment of genetic variability of a set of maize inbred lines for drought tolerance under temperate conditions. Int. J. Curr. Microbiol. App. Sci. 6, 2380–2389. https://doi.org/10.20546/ijcmas.2017.612.275.10.20546/ijcmas.2017.612.275 Search in Google Scholar

[73] Khan, A., Shahzad, A., Gul, H., Shahzad, M., Gul, S. (2022), Assessment of the relationship of yield and its contributing traits in wheat. DRC Sustainable Future 3(1), 4–10. https://doi.org/10.37281/DRCSF/3.1.1.10.37281/DRCSF/3.1.1 Search in Google Scholar

[74] Araus, J., Slafer, G. A., Reynolds, M. P., Toyo, C. (2002), Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 89, 925–940. https://doi.org/10.1093/aob/mcf049.10.1093/aob/mcf049423379912102518 Search in Google Scholar

[75] Ahsan, M., Farooq, A., Khaliq, I., Ali, Q., Aslam, M., Kashif, M. (2013), Inheritance of various yield-contributing traits in maize (Zea mays L.) at low moisture condition. African J. Agri. Res. 8, 413–420. https://doi.org/10.5897/ajar13.004.10.5897/AJAR13.004 Search in Google Scholar

[76] Ali, Q., Ali, A., Tariq, M., Abbas, M. A., Sarwar, B., Ahmad, M., Awaan, M. F., Ahmed, S., Nazar, Z. A., Akram, F. et al. (2014), Gene action for various grain and fodder quality traits in Zea mays. J. Food Nutr. Res. 2, 704–717. https://doi.org/10.12691/jfnr-2-10-9.10.12691/jfnr-2-10-9 Search in Google Scholar

[77] Beiragi, M. A., Sar, B. A. S., Geive, H. S., Alhossini, M. N., Rahmani, A., Gharibdoosti, A. B. (2012), Application of the multivariate analysis method for some traits in maize. Afr. J. Agric. Res. 7, 1524–1533. https://doi.org/10.5897/AJAR11.1595.10.5897/AJAR11.1595 Search in Google Scholar

[78] Rubino, D. B., Davis, D. W. (1990), Response of a sweet corn × tropical maize composite to mass selection for temperate-zone adaptation. J. Am. Soc. Hortic. Sci. 115, 848–853. https://doi.org/10.21273/JASHS.115.5.848.10.21273/JASHS.115.5.848 Search in Google Scholar

[79] Chaudhary, W. B., Ali, M. A., Bajwa, K. S., Iqbal, A., Azmat, M. (2017), Correlation analysis of maize genotypes under saline stress and its impact on morphological characteristics. Life Sci. J. 14, 93–101. Search in Google Scholar

eISSN:
2068-2964
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Chemistry, Environmental Chemistry, Life Sciences, Plant Science, Ecology, other