Cite

[1] Asante-Poku, A., Angelucci, F. (2013), Analysis of incentives and disincentives for cocoa in Ghana. Technical Note Series, Monitoring African Food and Agricultural Policies Project, (MAFAB). FAO, Rome. 35. Search in Google Scholar

[2] Ghana Statistical Service (GSS) (2015), Annual Gross Domestic Product. September 2015 edition. Accra. (http://www.statsghana.gov.gh/docfiles/GDP/GDP2015/2015_Annual_GDP_September_2015_Edition.pdf on 16 May 2017). Search in Google Scholar

[3] COCOBOD. (2013). Ghana’s National Cocoa Plan (September), 1–24. Search in Google Scholar

[4] Läderach, P., Martinez-Valle, A., Schroth, G., Castro, N. (2013), Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana, and Côte d’Ivoire. Clim. Chang. 119, 841–854.10.1007/s10584-013-0774-8 Search in Google Scholar

[5] Gateau-Rey, L., Tanner, E. V. J., Rapidel, B., Marelli, J., Royaert, S. (2018), Climate change could threaten cocoa production: Effects of 2015-16 El Niñorelated drought on cocoa agroforests in Bahia, Brazil. PLoS ONE 13(7), 1–1710.1371/journal.pone.0200454603903429990360 Search in Google Scholar

[6] Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F. (2005), Europewide reduction in primary productivity caused by the heat and drought in 2003. Nature. 437(7058), 529–533.10.1038/nature03972 Search in Google Scholar

[7] Loreto, F., Centritto, M. (2008), Leaf carbon assimilation in a water limited world. Plant Biosyst. 142, 154–161.10.1080/11263500701872937 Search in Google Scholar

[8] Agbo, C. U., Omaliko, C. M. (2006), Initiation and growth of shoots of Gongronema latifolia Benth stem cuttings in different rooting media. AJB. 5(5), 425–428. Search in Google Scholar

[9] Baiyeri, K. P., Mbah, B. N. (2006), The effect of soilless and soil-based nursery media on seedling emergence, growth, and response to water deficit stress of African breadfruit (Treculia Africana Decne). Afr. J. Biotechnol. 5, 15. Search in Google Scholar

[10] Siregar, C. A. (2007), Effect of charcoal application on the early growth stage of Acacia mangium and Michelia montana. J. For. Res. 4(1), 19–30.10.20886/ijfr.2007.4.1.19-30 Search in Google Scholar

[11] Lopez-Mondejar, R., Bernal-Vicente, A., Ros, M., Tittarelli, F., Canali, S., Intrigiolo, F., Pascual, J. A. (2010), Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresour. Technol. 101(10), 3718–3723.10.1016/j.biortech.2009.12.10220096572 Search in Google Scholar

[12] Adejobi, K. B., Akanbi, O. S., Ugiro, O., Nduka, I. (2013), Comparative effects of NPK fertilizer, cowpea pod husk and some tree crops waste on soil, leaf chemical properties and growth performance of cocoa (Theobroma cacao L.) Afr. J. Plant Sci. 8(2), 103–107.10.5897/AJPS12.181 Search in Google Scholar

[13] Bukhari, B., Sabaruddin, Z., Sufardi, S., Syafruddin, S. (2022) Effect of organic amendments on the water deficit stress resistance of corn varieties during vegetative stage in Ultisols. Indian J. Agric. Res. 711, 1–7.10.18805/IJARe.AF-711 Search in Google Scholar

[14] Duo, L. A., Liu, C. X., Zhao, S. L. (2018), Alleviation of drought stress in turfgrass by the combined application of nano-compost and microbes from compost. Russ. J. Plant Physiol. 65, 419–426.10.1134/S102144371803010X Search in Google Scholar

[15] Boutasknit, A., Anli, M., Anli, A., Tahiri, A., Raklami, A., Ait-El-Mokhtar, M., Ben-Laouane, R., Ait Rahou, Y., Boutaj, H., Oufdou, K., Wahbi, S., El Modafar, C., Meddich, A. (2020), Potential effect of horse manure-green waste and olive pomace-green waste composts on physiology and yield of garlic (Allium sativum L.) and soil fertility. Gesunde Pflanzen 72, 285–295.10.1007/s10343-020-00511-9 Search in Google Scholar

[16] Scotti, R., Bonanomi, G., Scelza, R., Zoina, A., Rao, M. A. (2015), Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil. Sci. Plant Nutr. 15, 333–352.10.4067/S0718-95162015005000031 Search in Google Scholar

[17] Kelbesa, W. A. (2021), Effect of compost in improving soil properties and its consequent effect on crop production – A review. J. Nat. Sci. Res. 12(10). Search in Google Scholar

[18] Lin, W., Lin, M., Zhou, H., Wu., H., Li, Z., Lin, W. (2019), The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One 14(5).10.1371/journal.pone.0217018653814031136614 Search in Google Scholar

[19] Alguacil, M., Caravaca, F., Diaz-Vivancos, P., Hernández, J. A., Roldan, A. (2016), Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant Soil 27, 209–218.10.1007/s11104-005-1238-3 Search in Google Scholar

[20] Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Arif, M., S., Hafeez, F., Al-Wabel, M., I., Shahzad, A., N. (2017), Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. Res. 24, 12700–12712.10.1007/s11356-017-8904-x Search in Google Scholar

[21] Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G., D., Rutherford, D. W., Sparrevik, M., Hale, S. E., Obia, A., Mulder., J. (2013), Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agron. 3, 256–274.10.3390/agronomy3020256 Search in Google Scholar

[22] Zong, Y., Xiao, Q., Lu, S. (2016), Acidity, water retention, and mechanical physical quality of a strongly acidic Ultisol amended with biochars derived from different feedstocks. J. Soils Sediments 16, 177–190.10.1007/s11368-015-1187-2 Search in Google Scholar

[23] Liu, J., Schulz, H., Brandl, S., Miehtke, H., Huwe, B., Glaser, B. (2012), Shortterm effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 175(5), 698–707.10.1002/jpln.201100172 Search in Google Scholar

[24] Agegnehu, G., Bird, M. I., Nelson, P. N., Bass, A. M. (2015), The ameliorating effects of biochar and compost on soil quality and plant growth on a Ferralsol. Soil Res. 53(1), 1–12.10.1071/SR14118 Search in Google Scholar

[25] Schmidt, H. P., Kamman, C., Niggli, C., Evangelou, M. W. H., Mackie, K. A., Abiven, S. (2014), Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agric. Ecosyst. Environ. 191, 117–123.10.1016/j.agee.2014.04.001 Search in Google Scholar

[26] Chaney, R. L., Sterrett, S. B., Morella, M. C., Lloyd, C. A. (1982), Effect of sludge quality and rate, soil pH, and time on heavy metal residues in leafy vegetables. In: Proc. Fifth Ann. Madison Conf. Applied Res. and Practice on Municipal and Industrial Waste. Univ. of Wis., Madison 444–458. Search in Google Scholar

[27] Okalebo, J. R., Guthua, K. W. Woomer, P. J. (2002). Laboratory methods of soil and plant analysis – A working manual. TSBF-CIAT and SACRED Africa, Nairobi, Kenya. Search in Google Scholar

[28] Bhardwaj, R. L. (2014), Effect of growing media on seed germination and seedling growth of papaya CV. ‘Red lady’. Afr. J. Plant Sci. 8(4), 178–184.10.5897/AJPS11.265 Search in Google Scholar

[29] Tariq, U., Rehman, S., Aslam, M. K., Younis, A., Yaseen, M., Ahsan, M. (2012), Agricultural and municipal waste as potting media components for the growth and flowering of Dahlia hortensis ‘Figaro’. Turk. J. Bot. 36, 378−385.10.3906/bot-1109-16 Search in Google Scholar

[30] Baiyeri, K. P., Mbah, B. N. (2006), Effects of soilless and soil-based nursery media on seedling emergence, growth, and response to water stress of African breadfruit (Treculia africana Decne). AJB. 5(15). Search in Google Scholar

[31] Wang, J. Y., Turner, N. C., Liu, Y. X., Siddique, K. H. M., Xiong, Y. C. (2017), Effects of drought stress on morphological, physiological, and biochemical characteristics of wheat species differing in ploidy level. Funct. Plant Biol. 44(2), 219–234.10.1071/FP1608232480559 Search in Google Scholar

[32] Curtis, M. J., Claassen, V. P. (2005), Compost incorporation increases plant available water in a drastically disturbed serpentine soil. Soil Sci. 170, 939–953.10.1097/01.ss.0000187352.16740.8e Search in Google Scholar

[33] Johnson, G. A., Qian, Y. L., Davis, J. G. (2009), Topdressing Kentucky bluegrass with compost increases soil water content and improves turf quality during drought. Comp. Sci. Util. 17, 95–102.10.1080/1065657X.2009.10702407 Search in Google Scholar

[34] Marschner, P. (2012), Marschner’s mineral nutrition of higher plants. 3rd edition. Academic Press, Amsterdam. Search in Google Scholar

[35] Vurukonda, S. S., Vardharajula, S., Shrivastava, M., Ali, S. K. Z. (2016), Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24.10.1016/j.micres.2015.12.003 Search in Google Scholar

eISSN:
2068-2964
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Chemistry, Environmental Chemistry, Life Sciences, Plant Science, Ecology, other