Open Access

Determination of the pKa value of some 1,2,4-triazol derivatives in forty seven different solvents using semi-empirical quantum methods (PM7, PM6, PM6-DH2, RM1, PM3, AM1, and MNDO) by MOPAC computer program


Cite

[1]. J.K. Mucha, M. Pagacz-Kostrzewa, J. Krupa, M. Wierzejewska, Structure and IR spectroscopic properties of complexes of 1,2,4-triazole and 3-amino-1,2,4-triazole with dinitrogen isolated in solid argon, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 285 (2023) 121901-121910. Search in Google Scholar

[2]. X. Cao, W. Wang, S. Wang, L. Bao, Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action, European Journal of Medicinal Chemistry 139 (2017) 718-725. Search in Google Scholar

[3]. F. Gao, T. Wang, J. Xiao, G. Huang, Antibacterial activity study of 1, 2, 4-triazole derivatives, European Journal of Medicinal Chemistry 173 (2019) 274-281. Search in Google Scholar

[4]. H. Sadeghpour, S. Khabnadideh, K. Zomorodian, K. Pakshir, K. Hoseinpour, N. Javid, E. Faghih-Mirzaei, Z. Rezaei, Design, synthesis, and biological activity of new triazole and nitrotriazole derivatives as antifungal agents, Molecules 22 (2017) 1150-1161. Search in Google Scholar

[5]. Y.N. Cheng, Zh.H. Jiang, L.Sh. Sun, Z.Y. Su, M.M. Zhang, H.L. Li, Synthesis of 1,2,4-triazole benzoyl arylamine derivatives and their high antifungal activities, European Journal of Medicinal Chemistry 200 (2020) 112463-112474. Search in Google Scholar

[6]. T. Tsukuda, Y. Shiratori, M. Watanabe, H. Ontsuka, K. Hattori, M. Shirai, N. Shimma, Modeling, synthesis and biological activity of novel antifungal agents-I, Bioorganic & Medicinal Chemistry Letters 8 (1998) 1819-1829. Search in Google Scholar

[7]. C.A.S. Arndt, T.J. Walsh, F.M. Pizzo, D.G. Poplack, Cerebrospinal fluid penetration of fluconazole: implications for antifungal therapy in patients with acquired immunodeficiency syndrome, The Journal of Infectious Diseases 157 (1988) 178-180. Search in Google Scholar

[8]. E. Mbailey, D.J. Krakovsky, M.J. Rybak, The triazole antifungal agents: A review of itraconazole and fluconazole, Pharmacotherapy 10 (1990) 146-153. Search in Google Scholar

[9]. J. Roberts, K. Schock, S. Marino, V.T. Andriole, Efficacies of two new antifungal agents, the triazole ravuconazole and the echinocandin LY-303366, in an experimental model of invasive aspergillosis, Antimicrobial Agents and Chemotherapy 44 (2000) 3381-3388. Search in Google Scholar

[10]. A. Espinel-Ingroff, In vitro activity of the new triazole voriconazole (UK-109, 496) against opportunistic filamentous and dimorphic fungi and common and emerging yeast pathogens, Journal of Clinical Microbiology 36 (1998) 198-202. Search in Google Scholar

[11]. J.A. Sabo, S.M. Abdel-Rahman, Voriconazole: a new triazole antifungal, Annals of Pharmacotherapy 34 (2000) 1032-1043. Search in Google Scholar

[12]. L.B. Johnson, C.A. Kauffman, Voriconazole: a new triazole antifungal agent, Clinical Infectious Diseases 36 (2003) 630-637. Search in Google Scholar

[13]. M.A. Pfaller, S. Messer, R.N. Jones, Activity of a new triazole, Sch 56592, compared with those of four other antifungal agents tested against clinical isolates of candida spp. and saccharomyces cerevisiae, Antimicrobial Agents and Chemotherapy 41 (1997) 233-235. Search in Google Scholar

[14]. G. Neenu, S. Arun K, S. Manisha, C. Venkaraddi Mangannavar, P. Gurubasavaraj Veeranna, Antitubercular potential of novel isoxazole encompassed 1, 2, 4-triazoles: design, synthesis, molecular docking study and evaluation of antitubercular activity, Antiinfective Agents 19 (2021) 147-161. Search in Google Scholar

[15]. K. Mohan Krishna, B. Inturi, G.V. Pujar, M.N. Purohit, G.S. Vijaykumar, Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1, 2, 4-triazoles as potential antitubercular agents, European Journal of Medicinal Chemistry 84 (2014) 516-529. Search in Google Scholar

[16]. R.S. Keri, S.A. Patil, S. Budagumpi, B.M. Nagaraja, Triazole: a promising antitubercular agent, Chemical Biology & Drug Design 86 (2015) 410-423. Search in Google Scholar

[17]. P.K. Chinthakindi, P.L. Sangwan, S. Farooq, R.R. Aleti, A. Kaul, A.K. Saxena, Y.L.N. Murthy, R.A. Vishwakarma, S. Koul, Diminutive effect on T and B-cell proliferation of non-cytotoxic α-santonin derived 1, 2, 3-triazoles: A report, European Journal of Medicinal Chemistry 60 (2013) 365-375. Search in Google Scholar

[18]. J. Liu, Q. Liu, X. Yang, Sh. Xu, H. Zhang, R. Bai, H. Yao, J. Jiang, M. Shen, X. Wu, J. Xu, Design, synthesis, and biological evaluation of 1, 2, 4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives as potential antihypertensive candidates, Bioorganic & Medicinal Chemistry 21 (2013) 7742-7751. Search in Google Scholar

[19]. G.E.D.A. Abuo-Rahma, M. Abdel-Aziz, N.A. Farag, T.S. Kaoud, Novel 1-[4-(Aminosulfonyl) phenyl]-1H-1, 2, 4-triazole derivatives with remarkable selective COX-2 inhibition: Design, synthesis, molecular docking, anti-inflammatory and ulcerogenicity studies, European Journal of Medicinal Chemistry 83 (2014) 398-408. Search in Google Scholar

[20]. M. Abdel-Aziz, E.A. Beshr, I.M. Abdel-Rahman, K. Ozadali, O.U. Tan, O.M. Aly, 1-(4-Methoxyphenyl)-5-(3, 4, 5-trimethoxyphenyl)-1H-1, 2, 4-triazole-3-carboxamides: Synthesis, molecular modeling, evaluation of their anti-inflammatory activity and ulcerogenicity, European Journal of Medicinal Chemistry 77 (2014) 155-165. Search in Google Scholar

[21]. L. Huang, J. Ding, M. Li, Z. Hou, Y. Geng, X. Li, H. Yu, Discovery of [1, 2, 4]-triazolo [1, 5-a] pyrimidine-7 (4H)-one derivatives as positive modulators of GABAA1 receptor with potent anticonvulsant activity and low toxicity, European Journal of Medicinal Chemistry 185 (2020) 111824-111833. Search in Google Scholar

[22]. T. Plech, J.J Luszczki, M. Wujec, J. Flieger, M. Pizon, Synthesis, characterization and preliminary anticonvulsant evaluation of some 4-alkyl-1, 2, 4-triazoles, European Journal of Medicinal Chemistry 60 (2013) 208-215. Search in Google Scholar

[23]. A.M. Vijesh, A.M. Isloor, P. Shetty, S. Sundershan, H.K. Fun, New pyrazole derivatives containing 1, 2, 4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents, European Journal of Medicinal Chemistry 62 (2013) 410-415. Search in Google Scholar

[24]. S.V. Kholodnyak, K.P. Schabelnyk, G.О. Zhernova, T.Yu. Sergeieva, V.V. Ivchuk, O.Yu. Voskoboynik, S.І. Kоvalenko, S.D. Trzhetsinskii, S.I. Okovytyy, S.V. Shishkina, Hydrolytic cleavage of the pyrimidine ring in 2-aryl-[1, 2, 4] triazole [1, 5-c] quinazolines: physico-chemical properties and the hypoglycemic activity of the compounds synthesized, News of Pharmacy 83 (2015) 9-17. Search in Google Scholar

[25]. R. Chelamalla, V. Akena, S. Manda, Synthesis of N-arylidene-2-(5-aryl-1H-1, 2,4-triazol-3-ylthio) acetohydrazides as antidepressants, Medicinal Chemistry Research 26 (2017) 1359-1366. Search in Google Scholar

[26]. C. Radhika, A. Venkatesham, M. Sarangapani, Synthesis and antidepressant activity of di substituted-5-aryl-1, 2, 4-triazoles, Medicinal Chemistry Research 21 (2012) 3509-3513. Search in Google Scholar

[27]. H.A. El-Sherief, B.G.M. Youssif, S.N.A. Bukhari, A.H. Abdelazeem, M. Abdel-Aziz, H.M. Abdel-Rahman, Synthesis, anticancer activity and molecular modeling studies of 1, 2, 4-triazole derivatives as EGFR inhibitors, European Journal of Medicinal Chemistry 156 (2018) 774-789. Search in Google Scholar

[28]. H.A.M. El-Sherief, B.G.M. Youssif, S.N.A. Bukhari, M. Abdel-Aziz, H.M. Abdel-Rahman, Novel 1, 2, 4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies, Bioorganic Chemistry 76 (2018) 314-325. Search in Google Scholar

[29]. A. Turky, A.H. Bayoumi, F.F. Sherbiny, K. El-Adl, H.S. Abulkhair, Unravelling the anticancer potency of 1, 2, 4-triazole-N-arylamide hybrids through inhibition of STAT3: synthesis and in silico mechanistic studies, Molecular Diversity 25 (2021) 403-420. Search in Google Scholar

[30]. K. Xu, L. Huang, Zh. Xu, Y. Wang, G. Bai, Q. Wu, X. Wang, Sh. Yu, Y. Jiang, De sign, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group, Drug Design, Development and Therapy 9 (2015) 1459-1467. Search in Google Scholar

[31]. B. Chaia, X. Qian, S. Cao, H. Liu, G. Song, Synthesis and insecticidal activity of 1,2,4-triazole derivatives, Arkivoc 2003 (2003) 141-145. Search in Google Scholar

[32]. Y. Naito, F. Akahoshi, S. Takeda, T. Okada, M. Kajii, H. Nishimura, M. Sugiura, C. Fukaya, Y. Kagitani, Synthesis and pharmacological activity of triazole derivatives inhibiting eosinophilia, Journal of Medicinal Chemistry 39 (1996) 3019-3029. Search in Google Scholar

[33]. E.E. Oruc, S. Rollas, L. Kabasakal, M.K. Uysal, The in vivo metabolism of 5-(4-nitrophenyl)-4-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione in rats, Drug Metabolism and Drug Interactions 15 (1999) 127-140. Search in Google Scholar

[34]. S. Maddila, R. Pagadala, S.B. Jonnalagadda, Synthesis and insecticidal activity of tetrazole linked triazole derivatives, Journal of Heterocyclic Chemistry 52 (2014) 487-491. Search in Google Scholar

[35]. K. Oh, K. Yamada, T. Asami, Y. Yoshizawa, Synthesis of novel brassinosteroid biosynthesis inhibitors based on the ketoconazole scaffold, Bioorganic & Medicinal Chemistry Letters 22 (2012) 1625-1628. Search in Google Scholar

[36]. J.R. Santen, Inhibition of aromatase: insights from recent studies, Steroids 68 (2003) 559-567. Search in Google Scholar

[37]. M. Clemons, R.E. Coleman, S. Verma, Aromatase inhibitors in the adjuvant setting:bringing the gold to a standard?, Cancer Treatment Reviews 30 (2004) 325-332. Search in Google Scholar

[38]. E. Delea, K. El-Ouagari, J. Karnon, O. Sofrygin, Costeffectiveness of letrozole versus tamoxifen as initial adjuvant therapy in postmenopausal women with hormone-receptor positive early breast cancer from a Canadian perspective, Breast Cancer Research and Treatment 108 (2008) 375-387. Search in Google Scholar

[39]. K. Christova, A. Shilkaitis, A. Green, R.G. Mehta, C. Grubbs, G. Kelloff, R. Lubet, Cellular responses of mammary carcinomas to aromatase inhibitors: Effects of vorozole, Breast Cancer Research and Treatment 60 (2000) 117-128. Search in Google Scholar

[40]. G. Roman, M.N. Rahman, D. Vukomanovic, Z. Jia, K. Nakatsu, W.A. Szarek, Heme oxygenase inhibition by 2-oxy-substituted 1-azolyl-4-phenyl butanes: effect of variation of the azole moiety. Xray crystal structure of human heme oxygenase-1 in complex with 4-phenyl-1- (1H-1,2,4-triazol-1-yl) -2-butanone, Chemical Biology & Drug Design 75 (2010) 68-90. Search in Google Scholar

[41]. L. Antonov, S. Kawauchi, K. Shirata, Acid Dissociation Constants of the Benzimidazole Unit in the Polybenzimidazole Chain: Configuration Effects, Molecules 27 (2022) 1064-1085. Search in Google Scholar

[42]. A. Doğan, S. Özdemir, M.S. Yalçın, H. Sarı, Y. Nural, Naphthoquinone–thiazole hybrids bearing adamantane: synthesis, antimicrobial, DNA cleavage, antioxidant activity, acid dissociation constant, and drug-likeness, Journal of Research in Pharmacy 25 (2021) 292-304. Search in Google Scholar

[43]. M. Meloun, L. Pilařová, A. Pfeiferová, T. Pekárek, Method of UV-metric and pH-metric determination of dissociation constants of ionizable drugs: Valsartan, Journal of Chemical Society 48 (2019) 1266-1286. Search in Google Scholar

[44]. M. Gemili, H. Sari, M. Ulger, E. Sahin, Y. Nural, Pt (II) and Ni (II) complexes of octahydropyrrolo [3, 4-c] pyrrole N-benzoylthiourea derivatives: Synthesis, characterization, physical parameters and biological activity, Inorganica Chimica Acta 463 (2017) 88-96. Search in Google Scholar

[45]. K. Gorgun, H.C. Sakarya, M. Ozkutuk, The synthesis, characterization, acid dissociation, and theoretical calculation of several novel benzothiazole schiff base derivatives, Journal of Chemical & Engineering Data 60 (2015) 594-601. Search in Google Scholar

[46]. S. Babić, A.J. Horvat, D.M. Pavlović, M. Kaštelan-Macan, Determination of pKa values of active pharmaceutical ingredients, TrAC Trends in Analytical Chemistry 26 (2017) 1043-1061. Search in Google Scholar

[47]. D.T. Manallack, The pKa distribution of drugs: application to drug discovery, Perspectives in Medicinal Chemistry 1 (2017) 25-38. Search in Google Scholar

[48]. P. Hunt, L. Hosseini-Gerami, T. Chrien, J. Plante, D.J. Ponting, M. Segall, Predicting pKa using a combination of quantum mechanical and machine learning methods, Journal of Chemical Information and Modeling 60 (2020) 2989-2997. Search in Google Scholar

[49]. F. İslamoğlu, N. Erdoğan, Calculation of thermodynamic properties of the most important forty-seven different solvents to create an information data bank through semi-empirical quantum methods used in determination of theoretical pKa, Indian Journal of Chemistry 59 (2020) 962-974. Search in Google Scholar

[50]. J.J.P. Stewart, MOPAC 2002 implemented in Cache Work System Pro, Fujitsu Ltd., Japan, 2003. Search in Google Scholar

[51]. H.T. Carlos, Thermodynamic cycle for calculating ab-initio pKa values of type n-CHO molecular systems, Journal of the Chilean Chemical Society, 61 (2006) 3160-3163. Search in Google Scholar

[52]. S. Prasad, J. Huang, Q. Zeng, B.R. Brooks, An explicit-solvent hybrid QM and MM approach for predicting pKa of small molecules in sample challenge, Journal of Computer-Aided Molecular Design 32 (2018) 1191-1201. Search in Google Scholar

eISSN:
2286-038X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other