Open Access

Cathode ray tubes glass wastes used for vitrification of iron oxide rich waste resulted from the groundwater treatment


Cite

[1]. Q. Zhao, J. Bai, Y. Gao, G. Zhang, Q. Lu, J. Jia, Heavy metal contamination in soils from freshwater wetlands to salt marshes in the Yellow River Estuary, China, Science of the Total Environment 774 (2021) 145072. Doi: 10.1016/j.scitotenv.2021.145072 Open DOISearch in Google Scholar

[2]. W. Wu, P. Wu, F. Yang, D.L. Sun, D.X. Zhang, Y.K. Zhou, Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility, Science of the Total Environment 630 (2018) 53–61. Doi: 10.1016/j.scitotenv.2018.02.18329475113 Open DOISearch in Google Scholar

[3]. J. Zhang, B. Liu, S. Zhang, A review of glass ceramic foams prepared from solid wastes: Processing, heavy-metal solidification and volatilization, applications, Science of the Total Environment 781 (2021) 146727. Doi: 10.1016/j.scitotenv.2021.14672733812111 Open DOISearch in Google Scholar

[4]. M. Samadi, G.F. Huseien, H. Mohammadhosseini, H.S. Lee, N.H.A.S. Lim, M.Md. Tahir, R. Alyousef, Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars, Journal of Cleaner Production 266 (2020) 121825. Doi: 10.1016/j.jclepro.2020.121825 Open DOISearch in Google Scholar

[5]. T.O. Ogundairo, D.D. Adegoke, I.I. Akinwumi, O.M. Olofinnade, Sustainable use of recycled waste glass as an alternative material for building construction – A review, IOP Conf. Series: Materials Science and Engineering 640 (2019) 012073. Doi: 10.1088/1757-899X/640/1/012073 Open DOISearch in Google Scholar

[6]. N. Shehata, T.E. Sayed, M.A. Abdelkareem, Recent progress in environmentally friendly geopolymers: a review, Science of the Total Environment 762 (2021) 143166. Doi: 10.1016/j.scitotenv.2020.14316633190897 Open DOISearch in Google Scholar

[7]. P. Kechagia, D. Koutroumpi, G. Bartzas, A. Peppas, M. Samouhos, S. Deligiannis, P.E. Tsakiridis, Waste marble dust and recycled glass valorization in the production of ternary blended cements, Science of the Total Environment 761 (2021) 143224. Doi: 10.1016/j.scitotenv.2020.14322433138991 Open DOISearch in Google Scholar

[8]. N. Sudharsan, T. Palanisamy, S.C. Yaragal, Environmental sustainability of waste glass as a valuable construction material - A critical review, Ecology, Environment and Conservation 24 (2018) S331-S338. Search in Google Scholar

[9]. A.W. Larsen, H. Merrild, T.H. Christensen, Recycling of glass: accounting of greenhouse gases and global warming contributions, Waste Management & Research: The Journal for a Sustainable Circular Economy 27 (2009) 773-780. Doi: 10.1177/0734242X0934214819710108 Open DOISearch in Google Scholar

[10]. M. Testa, O. Malandrino, M.R. Sessa, S. Supino, D. Sica, Long-term sustainability from the perspective of cullet recycling in the container glass industry: Evidence from Italy, Sustainability 9 (2017) 1752. Doi:10.3390/su9101752 Open DOISearch in Google Scholar

[11]. K.H. Hamzah, G.F. Huseien, M.A. Asaad, D.P. Georgescu, S.K. Ghoshal, F. Alrshoudi, Effect of waste glass bottles-derived nanopowder as slag replacement on mortars with alkali activation: Durability characteristics, Case Studies in Construction Materials 15 (2021) e00775. Doi: 10.1016/j.cscm.2021.e00775 Open DOISearch in Google Scholar

[12]. C.J.L. Sarkis, O.M. Raich, J.L.Z. Mestre, Assessment of the temperature of waterproofing membrane when a recycled crushed glass finish layer is used on flat roofs to protect from sun radiance, Energy Procedia 115 (2017) 451-462. Doi: 10.1016/j.egypro.2017.05.042 Open DOISearch in Google Scholar

[13]. E. Paknahad, A.P. Grosvenor, Investigation of the stability of glass-ceramic composites containing CeTi2O6 and CaZrTi2O7 after ion implantation, Solid State Sciences 74 (2017) 109-117. Doi: 10.1016/j.solidstatesciences.2017.10.013 Open DOISearch in Google Scholar

[14]. S. Luhar, T.W. Cheng, D. Nicolaides, I. Luhar, D. Panias, K. Sakkas, Valorisation of glass wastes for the development of geopolymer composites – Durability, thermal and microstructural properties: A review, Construction and Building Materials 222 (2019) 673-687. Doi: 10.1016/j.conbuildmat.2019.06.169 Open DOISearch in Google Scholar

[15]. F. Gol, A. Yilmaz, E. Kacar, S. Simsek, Z.G. Sarıtas, C. Ture, M. Arslan, M. Bekmezci, H. Burhan, F. Sen, Reuse of glass waste in the manufacture of ceramic tableware glazes, Ceramics International 47 (2021) 21061-21068. Doi: 10.1016/j.ceramint.2021.04.108 Open DOISearch in Google Scholar

[16]. N.P. Stochero, J.O.R. de Souza Chami, M.T. Souza, E.G. de Moraes, A.P. Novaes de Oliveira, Green Glass Foams from Wastes Designed for Thermal Insulation, Waste and Biomass Valorization 12 (2021) 1609–1620. Doi: 10.1007/s12649-020-01120-3 Open DOISearch in Google Scholar

[17]. R. Taurino, I. Lancellotti, L. Barbieri, C. Leonelli, Glass–Ceramic Foams from Borosilicate Glass Waste, International Journal of Applied Glass Science 5 (2014) 136-145. Doi: 10.1111/ijag.12069 Open DOISearch in Google Scholar

[18]. N. Singh, J. Li, X. Zeng, Global responses for recycling waste CRTs in e-waste, Waste Management 57 (2016) 187-197. Doi: 10.1016/j.wasman.2016.03.01327072617 Open DOISearch in Google Scholar

[19]. O. Karaahmet, B. Cicek, Waste recycling of cathode ray tube glass through industrial production of transparent ceramic frits, Journal of the Air & Waste Management Association 69 (2019) 1258-1266. Doi: 10.1080/10962247.2019.165403731403377 Open DOISearch in Google Scholar

[20]. F. Andreola, L. Barbieri, F. Bondioli, I. Lancellotti, P. Miselli, A.M. Ferrari, Recycling of Screen Glass Into New Traditional Ceramic Materials, International Journal of Applied Ceramic Technology 7 (2010) 909-917. Doi: 10.1111/j.1744-7402.2009.02378.x Open DOISearch in Google Scholar

[21]. Y. Zhitong, L. Tung-Chai, P.K. Sarker, S. Weiping, L. Jie, W. Weihong, T. Junhong, Recycling difficult-to-treat e-waste cathode-ray-tube glass as construction and building materials: A critical review, Renewable and Sustainable Energy Reviews 81 (2018) 595-604. Doi: 10.1016/j.rser.2017.08.027 Open DOISearch in Google Scholar

[22]. A.M. Rashad, Recycled cathode ray tube and liquid crystal display glass as fine aggregate replacement in cementitious materials, Construction and Building Materials 93 (2015) 1236-1248. Doi: 10.1016/j.conbuildmat.2015.05.004 Open DOISearch in Google Scholar

[23]. S. Wen, Z. Dujian, L. Tiejun, T. Jun, L. Lei, Effects of recycled CRT glass fine aggregate size and content on mechanical and damping properties of concrete, Construction and Building Materials 202 (2019) 332-340. Doi: 10.1016/j.conbuildmat.2019.01.033 Open DOISearch in Google Scholar

[24]. US EPA, Extraction procedure toxicity test in: Stabilization/Solidification of CERCLA and RCRAWastes, US EPA625/6-89/022, US EPA, Cincinnati, Ohio, 1986. Search in Google Scholar

eISSN:
2286-038X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other