Open Access

Synthesis and characterization of novel poly(α-methyl β-alanine-b-lactone)s through hydrogen-transfer and ring-opening polymerization


Cite

[1]. B. Dufour, K. Koynov, T. Pakula, K. Matyjaszewski, PBA–PMMA 3-Arm Star Block Copolymer Thermoplastic Elastomers, Macromolecular Chemistry Physics 209 (2008) 1686–1693. Doi: 10.1002/macp.200800151 Open DOISearch in Google Scholar

[2]. G. Gaucher, M.H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, J.C. Leroux, Block copolymer micelles: preparation, characterization and application in drug delivery, Journal Control Release 109 (2005) 169–188. Doi: 10.1016/j.jconrel.2005.09.034 Open DOISearch in Google Scholar

[3]. M.A. Hillmyer, Nanoporous Materials from Block Copolymer Precursors BT - Block Copolymers II. In: Abetz V (ed). Springer Berlin Heidelberg, Berlin, Heidelberg, (2005) pp. 137–181 Search in Google Scholar

[4]. P. Samanta, R. Srivastava, B. Nandan, (2018) Block copolymer compatibilization driven frustrated crystallization in electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. Royal Society Chemistry Advances 8 (2018) 17989–18007. Doi: 10.1039/C8RA02391C Open DOISearch in Google Scholar

[5]. A.A. Scherbina, A.E. Chalykh, Adhesive Compositions Based on Styrene–Isoprene–Styrene Three-Block Copolymer with Different Modifiers. Polymer Science, Serie D 11 (2018) 140–146. Doi: 10.1134/S1995421218020168 Open DOISearch in Google Scholar

[6]. M.P. Stoykovich, P.F. Nealey, Block copolymers and conventional lithography, Materials Today 9 (2006) 20–29. Doi: 10.1016/S1369-7021(06)71619-4 Open DOISearch in Google Scholar

[7]. D. Le, T.N.T. Phan, L. Autissier, L. Charles, D. Gigmes, A well-defined block copolymer synthesis via living cationic polymerization and nitroxide-mediated polymerization using carboxylic acid-based alkoxyamines as a dual initiator, Polymer Chemistry 7 (2016) 1659–1667. Doi: 10.1039/C5PY01934F Open DOISearch in Google Scholar

[8]. X. Tian, J. Ding, B. Zhang, F. Qui, X. Zhuang, Y. Chen, Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications, Polymers (Basel) 10 (2018) 318. Doi: 10.3390/polym10030318641508830966354 Open DOISearch in Google Scholar

[9]. E. Çatıker, T. Öztürk, M. Atakay, B. Salih, Synthesis and characterization of novel ABA type poly(Ester-ether) triblock copolymers. Journal of Polymer Research 26 (2019) 123–132. Doi: 10.1007/s10965-019-1778-5 Open DOISearch in Google Scholar

[10]. K. Adachi, Y. Tsukahara, Macroinitiator and Macromonomer: Preparation and Application BT - Encyclopedia of Polymeric Nanomaterials. In: Kobayashi S, Müllen K (eds). Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1167–1175 (2015). Search in Google Scholar

[11]. H. Uyama, H. Kikuchi, S. Kobayashi, One-Shot Synthesis of Polyester Macromonomer by Enzymatic Ring-Opening Polymerization of Lactone in the Presence of Vinyl Ester, Chemistry Letters 24 (1995) 1047–1048. Doi: 10.1246/cl.1995.1047 Open DOISearch in Google Scholar

[12]. D.S. Breslow, G.E. Hulse, A.S. Matlack, Synthesis of Poly-β-alanine from Acrylamide. A Novel Synthesis of β-Alanine1, Journal American Chemistry Society 79 (1957) 3760–3763. Doi: 10.1021/ja01571a039 Open DOISearch in Google Scholar

[13]. K. Yamaguchi, Y. Minoura, Hydrogen-transfer polymerization of acrylamide and methacrylamide with optically active basic catalysts, Journal of Polymer Science Part A-1 Polymer Chemistry 10 (1972) 1217–1231. Doi: 10.1002/pol.1972.150100425 Open DOISearch in Google Scholar

[14]. T. Iwamura, I. Tomita, M. Suzuki, T. Endo, Hydrogen-Transfer Polymerization of Vinyl Monomers Derived from 4-Methylbenzoyl Isocyanate and Acrylamide Derivatives, Journal of Polymer Science Part A Polym Chem 37 (1999) 465–472. Doi: 10.1002/(SICI)1099-0518(19990215)37:4<465::AIDPOLA10>3.0.CO;2-3 Open DOISearch in Google Scholar

[15]. E. Çatıker, O. Güven, B. Salih, Novel hydrophobic macromonomers for potential amphiphilic block copolymers, Polymer Bulletin 75 (2018) 47–60. Doi: 10.1007/s00289-017-2014-2 Open DOISearch in Google Scholar

[16]. H. Nakayama, T. Higashimura, S. Okamura, Base-Catalyzed polymerization of vinyl acetamide and allyl cyanide, Journal of Macromolecular Science Part A - Chemistry 2 (1968) 53–68. Doi: 10.1080/00222336808053347 Open DOISearch in Google Scholar

[17]. H. Wexler, Migrational polymerization of methacrylamide, Die Makromoleculare Chemie 115 (1968) 262–267. Doi: 10.1002/macp.1968.021150123 Open DOISearch in Google Scholar

[18]. H. Kouzaı, Hydrogen Transfer polymerization of acrylamide and ıts derivatives by sodium catalyst. Kobunshi Ronbunshu 61 (2004) 483–488. Doi: 10.1295/koron.61.483 Open DOISearch in Google Scholar

[19]. T. Otsu, B. Yamada, M. Itahashi, T. Mori, Hydrogen-transfer polymerization of methyl-substituted acrylamides, Journal of Polymer Science Polymer Chemistry Edition 14 (1976) 1347–1361. Doi: 10.1002/pol.1976.170140605 Open DOISearch in Google Scholar

[20]. I. Yoshiyuki, K. Kazuko, K. Yukio, Y. Shımızu, H. Arıta, Y. Kozaı, Hydrogen transfer polymerization of acrylamide derivatives by sodium naphthalene, Kobunshi Ronbunshu 44 (1987) 451–460. Doi: 10.1295/koron.44.451 Open DOISearch in Google Scholar

[21]. S. Okamura, Y. Oishi, T. Higashimura, T. Senoo, The study on the transition polymerization of methacrylamide, Kobunshi Kagaku 19 (1962) 323–327. Doi: 10.1295/koron1944.19.323 Open DOISearch in Google Scholar

[22]. R. Liu, K.Z. Vang, P.K. Kreeger, S.H. Gellman, K.S. Masters, Experimental and computational analysis of cellular interactions with nylon-3-bearing substrates, Journal Biomedical Material Research - Part A 100A (2012) 2750–2759. Doi: 10.1002/jbm.a.34211 Open DOISearch in Google Scholar

[23]. E. Çatıker, E. Konuk, T. Gültan, M. Gümüşderelioğlu, Enhancement of scaffolding properties for poly(3-hydroxybutyrate): blending with poly-β-alanine and wet electrospinning, International Journal of Polymeric Materials and Polymeric Biomaterials 68 (2019) 338–349. Doi: 10.1080/00914037.2018.1552862 Open DOISearch in Google Scholar

[24]. L R. Liu, K.S. Masters, S.H. Gellman, Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces, Biomacromolecules 13 (2012) 1100–1105. Doi: 10.1021/bm201847n337240122455338 Open DOISearch in Google Scholar

[25]. M.R. Lee, S.S. Stahl, S.H. Gellman, K.S. Masters, Nylon-3 copolymers that generate cell-adhesive surfaces identified by library screening, Journal American Chemistry Society 131 (2009) 16779–16789. Doi: 10.1021/ja9050636281840919886604 Open DOISearch in Google Scholar

[26]. B.S. Thorat Gadgil, N. Killi, G.V.N. Rathna, Polyhydroxyalkanoates as biomaterials, Medchemcomm 8 (2017) 1774–1787. Doi: 10.1039/c7md00252a608419830108887 Open DOISearch in Google Scholar

[27]. G.Q. Chen, J. Zhang, Microbial polyhydroxyalkanoates as medical implant biomaterials, Artificial Cells, Nanomedicine, and Biotechnology 46 (2018) 1–18. Doi: 10.1080/21691401.2017.137118528849679 Open DOISearch in Google Scholar

[28]. Ł. Kaniuk, U. Stachewicz, Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications, ACS Biomaterial Science Engineering 7 (2021) 5339-5362. Doi: 10.1021/acsbiomaterials.1c00757867235634649426 Open DOISearch in Google Scholar

[29]. S. Penczek, M. Cypryk, A. Duda, P. Kubisa, S. Słomkowski, Living ring-opening polymerizations of heterocyclic monomers, Progress in Polymer Science 32 (2007) 247–282. Doi: 10.1016/j.progpolymsci.2007.01.002 Open DOISearch in Google Scholar

[30]. O. Nuyken, S.D. Pask, Ring-Opening Polymerization—An Introductory Review, Polymers (Basel) 5 (2013) 361–403. Doi: 10.3390/polym5020361 Open DOISearch in Google Scholar

[31]. K. Roos, Polyethers and polyamide-3 synthesis by monomer activated anionic polymerization, Doctoral Thesis, University of Bordeaux (2016). Search in Google Scholar

[32]. W.F. Su, Ring-Opening Polymerization BT - Principles of Polymer Design and Synthesis. In: Su W-F (ed). Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 267–299 (2013). Search in Google Scholar

[33]. A. Duda, A. Kowalski, Thermodynamics and Kinetics of Ring-Opening Polymerization. Handbook of Ring-Opening Polymer, Edited by P. Dubois, O. Coulembier, and J.-M. Raquez, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim pp. 1–51 (2009).10.1002/9783527628407.ch1 Search in Google Scholar

[34]. I. Nifant’ev, P. Ivchenko, DFT Modeling of Organocatalytic Ring-Opening Polymerization of Cyclic Esters: A Crucial Role of Proton Exchange and Hydrogen Bonding, Polymers (Basel) 11 (2019) 2078. Doi: 10.3390/polym11122078696103331842423 Open DOISearch in Google Scholar

[35]. W. Zhao, Q. Wang, Y. Cui, J. He, Y. Zhang, Living /controlled ring-opening (co)polymerization of lactones by Al-based catalysts with different sidearms, Dalton Transaction 48 (2019) 7167–7178. Doi: 10.1039/C8DT03941K30500019 Open DOISearch in Google Scholar

[36]. B. Savaş, E. Çatıker, T. Öztürk, E. Meyvacı, Synthesis and characterization of poly(α-methyl β-alanine)-poly(ε-caprolactone) tri arm star polymer by hydrogen transfer polymerization, ring-opening polymerization and “click” chemistry, Journal Polymer Research 28 (2021) 1–10. Doi: 10.1007/s10965-020-02367-z Open DOISearch in Google Scholar

[37]. E. Çatıker, E. Sancaktar, Blends of poly(3-hydroxybutyrate) with poly(β-alanine) and its derivatives, Journal of Applied Polymer Science 131 (13) (2014). Doi: 10.1002/app.40484 Open DOISearch in Google Scholar

[38]. E. Çatiker, T. Filik, Direct Synthesis of Hyperbranched Poly(acrylic acid-co-3-hydroxypropionate), International Journal of Polymer Science 2015 (2015) 231059. Doi: 10.1155/2015/231059 Open DOISearch in Google Scholar

[39]. H. Abe, Thermal degradation of environmentally degradable poly(hydroxyalkanoic acid)s, Macromolecular Bioscience 6 (2006) 469–486. Doi: 10.1002/mabi.20060007016921535 Open DOISearch in Google Scholar

[40]. A. Czerniecka-Kubicka, W. Frącz, M. Jasiorski, W. Błażejewski, B. Pilch-Pitera, M.Pyda, I. Zarzyka, Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay, Journal of Thermal Analysis and Calorimetry 128 (2017) 1513–1526. Doi: 10.1007/s10973-016-6039-9 Open DOISearch in Google Scholar

[41]. E. Çatıker, T. Öztürk, M. Atakay, B. Salih, Synthesis and characterization of the ABA-type poly(ester-ether-ester) block copolymers, Journal of Macromolecular Science Part A Pure Applied Chemistry 57 (2020) 600–609. Doi: 10.1080/10601325.2020.1745080 Open DOISearch in Google Scholar

[42]. J. Hong, D. Cho, T. Chang, W. Shim, D.S. Lee, (2003) Characterization of poly(ethylene oxide)-bpoly(l-lactide) block copolymer by matrix-assisted laser desorption/ıonization time-of-flight mass spectrometry, Macromolecular Research 11 341-346. Doi: 10.1007/BF03218374 Open DOISearch in Google Scholar

[43]. M. Girod, M. Mazarin, T.N.T. Phan, D. Gigmes, L. Charles, Determination of block size in poly(ethylene oxide)-b-polystyrene block copolymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Journal of Polymer Science Part A Polymer Chemistry 47 (2009) 3380–3390. Doi: 10.1002/pola.23414 Open DOISearch in Google Scholar

[44]. M. Chausson, A.S. Fluchère, E. Landreau, Y. Aguni, Y. Chevalier, T. Hamaide, N. Abdul-Malak, I. Bonnet, Block copolymers of the type poly(caprolactone)-b-poly(ethylene oxide) for the preparation and stabilization of nanoemulsions, International Journal of Pharmacy 362 (2008) 153–162. Doi: 10.1016/j.ijpharm.2008.06.00718602457 Open DOISearch in Google Scholar

eISSN:
2286-038X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other