Cite

[1]. J. Cardot, E. Beyssac, M. Alric, In vitro-in vivo correlation: Importance of dissolution in IVIVC. Dissolution Technol. 14 (2007) 15. Doi: dx.doi.org/10.14227/DT140107P15.10.14227/DT140107P15 Search in Google Scholar

[2]. S. D’Souza, A review of in vitro drug release test methods for nano-sized dosage forms, Adv. Pharm. 2014 (2014) 1–12. https://doi.org/10.1155/2014/304757.10.1155/2014/304757 Search in Google Scholar

[3]. J. Weng, H. Tong, S. F. Chow, In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method. Pharmaceutics 12 (2020) 732. https://doi.org/10.3390/pharmaceutics12080732.10.3390/pharmaceutics12080732 Search in Google Scholar

[4]. H.D. Williams, N.L. Trevaskis, S.A. Charman, R.M. Shanker, W.N. Charman, C.W. Pouton, C.J.H. Porter, Strategies to address low drug solubility in discovery and development, Pharmacolical Reviews 65 (2013) 315–499. Doi: 10.1124/pr.112.005660.10.1124/pr.112.005660 Search in Google Scholar

[5]. K. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices, Journal of Controlled Release 70 (2001) 1-20. Doi: 10.1016/s0168-3659(00)00339-4.10.1016/S0168-3659(00)00339-4 Search in Google Scholar

[6]. S. Nimesh, R. Manchanda, R. Kumar, A. Saxena, P. Chaudhary, V. Yadav, S. Mozumdar, R. Chandra, Preparation, characterization and in vitro drug release studies of novel polymeric nanoparticles, International Journal of Pharmaceutics 323 (2006) 146-152. Doi: 10.1016/j.ijpharm.2006.05.065.10.1016/j.ijpharm.2006.05.06516920286 Search in Google Scholar

[7]. J.U.A.H. Junghanns, R.H. Müller, Nanocrystal technology, drug delivery and clinical applications, International Journal of Nanomedicine 3 (2008) 295–309. Doi: 10.2147/ijn.s595.10.2147/IJN.S595 Search in Google Scholar

[8]. P. Khadka, J. Ro, H. Kim, I. Kim, J.T. Kim, H. Kim, J.M. Cho, G. Yun, J. Lee, Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability, Asian Journal of Pharmaceutical Sciences 9 (2014) 304–316. https://doi.org/10.1016/j.ajps.2014.05.005.10.1016/j.ajps.2014.05.005 Search in Google Scholar

[9]. F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. Le Breton, V. Préat, PLGA-based nanoparticles: An overview of biomedical applications, Journal of Controlled Release, 161 (2012) 505-522. Doi: https://doi.org/10.1016/j.jconrel.2012.01.043.10.1016/j.jconrel.2012.01.04322353619 Search in Google Scholar

[10]. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein Journal of Nanotechnology 9 (2018) 1050-1074. Doi: 10.3762/bjnano.9.98.10.3762/bjnano.9.98590528929719757 Search in Google Scholar

[11]. T. Matoba, J. Koga, K. Nakano, K. Egashira, H. Tsutsui, Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease, Journal of Cardiology 70 (2017) 206-211. https://doi.org/10.1016/j.jjcc.2017.03.005.10.1016/j.jjcc.2017.03.00528416142 Search in Google Scholar

[12]. O. Pechanova, E. Dayar, M. Cebova, Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system, Molecules 25 (2020) 3322. Doi: 10.3390/molecules25153322.10.3390/molecules25153322743587032707934 Search in Google Scholar

[13]. D. Essa, P.P.D. Kondiah, Y.E. Choonara, V. Pillay, The design of poly(lactide-co-glycolide) nanocarriers for medical applications, Frontiers in Bioengineering and Biotechnology 8 (2020) 48. Doi: 10.3389/fbioe.2020.00048.10.3389/fbioe.2020.00048702649932117928 Search in Google Scholar

[14]. L. Nothnagel, M.G. Wacker, How to measure release from nanosized carriers? European Journal of Pharmaceutical Sciencies 120 (2018) 199-211. Doi: 10.1016/j.ejps.2018.05.004.10.1016/j.ejps.2018.05.00429751101 Search in Google Scholar

[15]. M. Yu, W. Yuan, D. Li, A. Schwendeman, S.P. Schwendeman, Predicting drug release kinetics from nanocarriers inside dialysis bags, Journal of Controlled Release 315 (2019) 23-30. Doi: 10.1016/j.jconrel.2019.09.016.10.1016/j.jconrel.2019.09.01631629038 Search in Google Scholar

[16]. S. Modi, B.D. Anderson, Determination of drug release kinetics from nanoparticles: Overcoming pitfalls of the dynamic dialysis method, Mol. Pharm. 10 (2013) 3076–3089. https://doi.org/10.1021/mp400154a.10.1021/mp400154a23758289 Search in Google Scholar

[17]. M. Yu, W. Yuan, D. Li, A. Schwendeman, S.P. Schwendeman, Predicting drug release kinetics from nanocarriers inside dialysis bags, Journal of Controlled Release 315 (2019) 23–30. https://doi.org/10.1016/j.jconrel.2019.09.016.10.1016/j.jconrel.2019.09.016 Search in Google Scholar

[18]. Y. Zambito, E. Pedreschi, G. Di Colo, Is dialysis a reliable method for studying drug release from nanoparticulate systems?—A case study, Int. J. Pharm. 434 (2012) 28–34. https://doi.org/10.1016/j.ijpharm.2012.05.020.10.1016/j.ijpharm.2012.05.02022617795 Search in Google Scholar

[19]. F. Sha’at, R.D. Pavaloiu, D.C. Salceanu, C. Hlevca, G. Nechifor, Formulation of Polymeric Multicomponent Systems Containing Cardiovascular APIs, Materiale Plastice 55 (2018) 121-123. Doi: 10.37358/MP.18.1.4976.10.37358/MP.18.1.4976 Search in Google Scholar

[20]. F. Sha’at, R.D. Pavaloiu, D.C. Salceanu, C. Hlevca, G. Nechifor, Evaluation of AML-VAL nanoparticles as combined therapy in cardiovascular disease, Materiale Plastice 54 (2018) 299-302. Doi: 10.37358/MP.18.3.5017.10.37358/MP.18.3.5017 Search in Google Scholar

[21]. A. Verma, S. Ratnawat, A. Gupta, S. Jain, PLGA nanoparticles for delivery of losartan potassium through intranasal route: development and characterization, Int. J. Drug Dev. & Res. 5 (2013) 185-196. Search in Google Scholar

[22]. U. Jana, A.K. Mohanty, S.L. Pal, P.K. Manna, G.P. Mohanta, Felodipine loaded PLGA nanoparticles: preparation, physicochemical characterization and in vivo toxicity study, Nano Convergence 1 (2014) 31. https://doi.org/10.1186/s40580-014-0031-5.10.1186/s40580-014-0031-5 Search in Google Scholar

[23]. M.L. Zweers, G.H. Engbers, D.W. Grijpma, J. Feijen, In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide), Journal of Controlled Release 100 (2004) 347-356. https://doi.org/10.1016/j.jconrel.2004.09.008.10.1016/j.jconrel.2004.09.00815567501 Search in Google Scholar

eISSN:
2286-038X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other