Cite

[1]. Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi, A. Montiel, Heavy metal ions removal from aqueous solutions by activated phosphate rock, Journal of Hazardous Materials 156 (2008) 412-420. DOI: 10.1016/j.jhazmat.2007.12.03610.1016/j.jhazmat.2007.12.03618242833 Search in Google Scholar

[2]. S. Kanchi, Nanotechnology for water treatment, Journal Environmental Analytical Chemistry 1 (2014) 1-3. DOI: 10.4172/2380-2391.1000e10210.4172/2380-2391.1000e102 Search in Google Scholar

[3]. I. Ali, New generation adsorbents for water treatment, Chemical Reviews 112 (2012) 5073-5091. DOI: 10.1021/cr300133d10.1021/cr300133d22731247 Search in Google Scholar

[4]. I. Gehrke, A. Geiser, A. Somborn-Schulz, Innovations in nanotechnology for water treatment, Nanotechnology, Science and Applications 8 (2015) 1-17. DOI: 10.2147/NSA.S4377310.2147/NSA.S43773429402125609931 Search in Google Scholar

[5]. G. Xu, L. Yang, M. Zhong, C. Li, X. Lu, X. Kan, Selective recognition and electrochemical detection of p-nitrophenol based on a macroporous imprinted polymer containing gold nanoparticles, Microchim Acta 180 (2013) 1461-1469. DOI: 10.1007/s00604-013-1090-810.1007/s00604-013-1090-8 Search in Google Scholar

[6]. X. Qu, P. J. J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Research 47 (2013) 3931-3946. DOI: 10.1016/j.watres.2012.09.05810.1016/j.watres.2012.09.05823571110 Search in Google Scholar

[7]. R. Das, A.M.E. Hamid, S.B.A. Ramakrishna, S. Chowdhury, Z. Zaman, Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination 336 (2014) 97-109. DOI: 10.1016/j.desal.2013.12.02610.1016/j.desal.2013.12.026 Search in Google Scholar

[8]. X. Batlle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties, Journal of Physics D: Applied Physics 35 (2002) R15. DOI: 10.1088/0022-3727/35/6/20110.1088/0022-3727/35/6/201 Search in Google Scholar

[9]. X. Qu, J. Brame, Q. Li, P.J.J. Alvarez, Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse, Accounts of Chemical Research 46 (2013) 834-843. DOI: 10.1021/ar300029v10.1021/ar300029v22738389 Search in Google Scholar

[10]. T.E. Cloete, M. de Kwaadsteniet, M. Botes, J.M. López-Romero, Nanotechnology in Water Treatment Applications, Caister Academic Press, Norfolk, UK (2010). Search in Google Scholar

[11]. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Advances in Colloid and Interface Science 209 (2014) 172-184. DOI: 10.1016/j.cis.2014.04.00210.1016/j.cis.2014.04.00224780401 Search in Google Scholar

[12]. E.N. Zare, M.M. Lakouraj, A. Ramezani, Efficient sorption of Pb (II) from an aqueous solution using a poly (aniline-co-3-aminobenzoic acid)-based magnetic core–shell nanocomposite, New Journal of Chemistry 40 (2016) 2521-2529. DOI: 10.1039/C5NJ02880A10.1039/C5NJ02880A Search in Google Scholar

[13]. Y. Bulut, H. Aydın, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells, Desalination 194 (2006) 259-267. DOI:10.1016/j.desal.2005.10.03210.1016/j.desal.2005.10.032 Search in Google Scholar

[14]. A.G. Yavuz, E.D. Atalay, A. Uygun, F. Gode, E. Aslan, A comparison study of adsorption of Cr(VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites, Desalination 279 (2011) 325-331. DOI:10.1016/j.desal.2011.06.03410.1016/j.desal.2011.06.034 Search in Google Scholar

[15]. M.E. Argun, S. Dursun, M. Karatas, M. Gürü, Activation of pine cone using Fenton oxidation for Cd(II) and Pb(II) removal, Bioresource Technology 99 (2008) 8691–8698. DOI: 10.1016/j.biortech.2008.04.01410.1016/j.biortech.2008.04.014 Search in Google Scholar

[16]. S. Netpradit, P. Thiravetyan, S. Towprayoon, Adsorption of three azo reactive dyes by metal hydroxide sludge: effect of temperature, pH, and electrolytes, Journal of Colloid and Interface Science 270 (2004) 255-261. DOI: 10.1016/j.jcis.2003.08.07310.1016/j.jcis.2003.08.073 Search in Google Scholar

[17]. D. Koeppenkastrop, E.H. Decarlo, Uptake of rare-earth elements from solution by metal-oxides, Environmental Science and Technology 27 (1993) 1796-1802. DOI:10.1021/es00046a00610.1021/es00046a006 Search in Google Scholar

[18]. P. Trivedi, L. Axe, Modeling Cd and Zn sorption to hydrous metal oxides, Environmental Science and Technology 34 (2000) 2215-2223. DOI: 10.1021/es991110c10.1021/es991110c Search in Google Scholar

[19]. Y.H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, B. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes, Carbon 41 (2003) 2787-2792. DOI: 10.1016/S0008-6223(03)00392-010.1016/S0008-6223(03)00392-0 Search in Google Scholar

[20]. Y.H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon 41 (2003) 1057-1062. DOI: 10.1016/S0008-6223(02)00440-210.1016/S0008-6223(02)00440-2 Search in Google Scholar

[21]. A.Z.M. Badruddoza, Z.B.Z. Shawon, M.T. Rahman, K.W. Hao, K. Hidajat, M.S. Uddin, Ionically modified magnetic nanomaterials for arsenic and chromium removal from water, Chemical Engineering Journal 225 (2013) 607-615. DOI: 10.1016/j.cej.2013.03.11410.1016/j.cej.2013.03.114 Search in Google Scholar

[22]. Y. Lei, F. Chen, Y. Luo, L. Zhang, Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal, Journal of Materials Science 49 (2014) 4236–4245. DOI: 10.1007/s10853-014-8118-210.1007/s10853-014-8118-2 Search in Google Scholar

[23]. L. Tan, J. Xu, X. Xue, Z. Lou, J. Zhu, S.A. Baig, X. Xu, Multifunctional nanocomposite Fe3O4@SiO2-mPD/SP for selective removal of Pb(II) and Cr(VI) from aqueous solutions, Royal Society of Chemistry Advances 4 (2014) 45920-45929. DOI: 10.1039/c4ra08040h10.1039/C4RA08040H Search in Google Scholar

[24]. R.M. Fratila, S.G. Mitchell, P. del Pino, V. Grazu, J.M. de la Fuente, Strategies for the biofunctionalization of gold and iron oxide nanoparticles, Langmuir 30 (2014) 15057-15071. DOI: 10.1021/la501565810.1021/la5015658 Search in Google Scholar

[25]. R.R. Baker, J.G. Mather, J.H. Kennaugh, Magnetic bones in human sinuses, Nature 301 (1983) 79-80. DOI: 10.1038/301078a010.1038/301078a0 Search in Google Scholar

[26]. W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Science and Technology of Advanced Materials 16 (2015) e023501 (43pp). DOI: 10.1088/1468-6996/16/2/02350110.1088/1468-6996/16/2/023501 Search in Google Scholar

[27]. Y.H. Chen, F.A. Li, Kinetic study on removal of copper(II) using goethite and hematite nanophotocatalysts, Journal of Colloid and Interface Science 347 (2010) 277-281. 10.1016/j.jcis.2010.03.05010.1016/j.jcis.2010.03.050 Search in Google Scholar

[28]. P. Majewski, B. Thierry, Functionalized magnetite nanoparticles-synthesis, properties, and bio-applications, Critical Reviews in Solid State and Materials Sciences 32 (2007) 203-215. DOI: 10.1080/1040843070177668010.1080/10408430701776680 Search in Google Scholar

[29]. P.J. Tarta, M.P. Morales, T.G. Xlez-Carreno, S. Veintemillas-Verdaguer, C.J. Serna, Advances in magnetic nanoparticles for biotechnology applications, Journal of Magnetism and Magnetic Materials 290-291 (2005) 28-34. DOI: 10.1016/j.jmmm.2004.11.15510.1016/j.jmmm.2004.11.155 Search in Google Scholar

[30]. D.C. Culita, G. Marinescu, L. Patron, O. Carp, C. B. Cizmas, L. Diamandescu, Superparamagnetic nanomagnetites modified with histidine and tyrosine, Materials Chemistry and Physics 111 (2008) 381–385. DOI: 10.1016/j.matchemphys.2008.04.03310.1016/j.matchemphys.2008.04.033 Search in Google Scholar

[31]. D.E. Speliotis, Magnetic recording beyond the first 100 Years, Journal of Magnetism and Magnetic Materials 193 (1999) 29-35. DOI: 10.1016/S0304-8853(98)00399-010.1016/S0304-8853(98)00399-0 Search in Google Scholar

[32]. A. Ito, M. Hayashida, H. Honda, K. Hata, H. Kagami, M. Ueda, T. Kobayashi, Construction and harvest of multilayered keratonocyte sheets using magnetite nanoparticles and magnetic force, Tissue Engineering 10 (2004) 873-880. DOI: 10.1089/107632704134844610.1089/1076327041348446 Search in Google Scholar

[33]. A. Jordan, P. Wust, H. Fahling, R. Scholz, Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia, international journal of hyperthermia 9 (1993) 51-58. DOI: 10.3109/0265673930906147810.3109/02656739309061478 Search in Google Scholar

[34]. U. Hafeli, W. Schutt, J. Teller, M. Zborowski, Scientific and Clinical Applications of Magnetic Carriers, Springer Science et Bussiness Media, Plenum Press: New York and London (1997) 527-534. Search in Google Scholar

[35]. W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Science and Technology of Advanced Materials 16 (2015) 023501. DOI: 10.1088/1468-6996/16/2/02350110.1088/1468-6996/16/2/023501 Search in Google Scholar

[36]. P.K. Gupta, C.T. Hung, F.C. Lam, D.G. Perrier, Albumin Microspheres. III. Synthesis and characterization of microspheres containing adriamycin and magnetite, International Journal of Pharmaceutics 43 (1988) 167-177. DOI: 10.1016/0378-5173(88)90072-510.1016/0378-5173(88)90072-5 Search in Google Scholar

[37]. T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, Journal of Magnetism and Magnetic Materials 293 (2005) 483-496. DOI: 10.1016/j.jmmm.2005.01.06410.1016/j.jmmm.2005.01.064 Search in Google Scholar

[38]. Z. Xu, Y. Hou, S. Sun, Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties, Journal of the American Chemical Society 129 (2007) 8698-8699. DOI: 10.1021/ja073057v10.1021/ja073057v17590000 Search in Google Scholar

[39]. Q. Liu, Z.M. Cui, Z. Ma, S.W. Bian, W.G. Song, L.J. Wan, Morphology control of Fe2O3 nanocrystals and their application in catalysis, Nanotechnology 18 (2007) 385605. DOI: 10.1088/0957-4484/18/38/38560510.1088/0957-4484/18/38/385605 Search in Google Scholar

[40]. A.M. Grumezescu, Water purification/ Nanotechnology in the Agri-Food Industry, Academic Press Volume 9/ 8 Chapter 1 (2017). ISBN: 978-0-12-804300-4 Search in Google Scholar

[41]. M. Wierucka, M. Biziuk, Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples, TrAC Trends in Analytical Chemistry 59 (2014) 50-58. DOI: 10.1016/j.trac.2014.04.00710.1016/j.trac.2014.04.007 Search in Google Scholar

[42]. J.H. Meg, G.Q. Yang, L.M. Yan, X.Y. Wang, Synthesis and characterization of magnetic nanometer pigment Fe3O4, Dyes and Pigments 66 (2005) 109-113. DOI: 10.1016/j.dyepig.2004.08.01610.1016/j.dyepig.2004.08.016 Search in Google Scholar

[43]. A.F.C. Campos, R. Aquino, T.A.P.G. Cotta, F.A. Tourinho, J. Depeyrot, Using speciation diagrams to improve synthesis of magnetic nanosorbents for environmental applications, Bulletin of Materials Science 34 (2011) 1357-1361. DOI: 10.1007/s12034-011-0328-510.1007/s12034-011-0328-5 Search in Google Scholar

[44]. P. Russo, D. Acierno, M. Palomba, G. Carotenuto, R. Rosa, A. Rizzuti, C. Leonelli, Ultrafine magnetite nanopowder: Synthesis, characterization, and preliminary use as filler of polymethylmethacrylate nanocomposites, Journal of Nanotechnology, 2012 (2012) e728326. DOI: 10.1155/2012/72832610.1155/2012/728326 Search in Google Scholar

[45]. H. Karami, Heavy metal removal from water by magnetite nanorods, Chemical Engineering Journal 219 (2013) 209-216. DOI: 10.1016/j.cej.2013.01.02210.1016/j.cej.2013.01.022 Search in Google Scholar

[46]. H. Karami, E. Chidar, Pulsed-electrochemical synthesis and characterizations of magnetite nanorods, International Journal of Electrochemical Science 7 (2012) 2077-2090. http://www.electrochemsci.org/papers/vol7/7032077.pdf Search in Google Scholar

[47]. S. Malato, P.F. Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catalysis Today 147 (2009) 1-59. DOI: 10.1016/j.cattod.2009.06.01810.1016/j.cattod.2009.06.018 Search in Google Scholar

[48]. D. Rickerby, M. Morrison, Report from the workshop on nanotechnologies for environmental remediation, JRC Ispra 2007 (2011), from: http://www.nanowerk.com/nanotechnology/reports/reportpdf/report101.pdf Search in Google Scholar

[49]. J. Bandara, U. Klehm, J. Kiwi, Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation. Applied Catalysis B: Environmental 76 (2007) 73-81. DOI: 10.1016/j.apcatb.2007.05.00710.1016/j.apcatb.2007.05.007 Search in Google Scholar

[50]. A.D. McNaught, A. Wilkinson, IUPAC Gold Book, Blackwell Scientific Publications, Oxford (1997). Search in Google Scholar

[51]. K. Jones, C. Boxall, R. McCabe, D. Shaw, M. Buck, Nanocomposites for water treatment, ECS Transactions 6 (2007) 17-27. DOI: 10.1149/1.279039810.1149/1.2790398 Search in Google Scholar

[52]. J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environmental Science & Technology 42 (2008) 6949-6954. DOI: 10.1021/es800924c10.1021/es800924c18853814 Search in Google Scholar

[53]. M. dos Santos Pires, L.C. Tavares Lacerda, S. Corrêa, T.C. Silva, A.A. de Castro, T.C. Ramalho, Iron Oxides Applied to Catalysis, Recent Advances in Complex Functional Materials Spinger, 2017, pp. 409-42. DOI: 10.1007/978-3-319-53898-3_1610.1007/978-3-319-53898-3_16 Search in Google Scholar

[54]. I. Edelman, O. Ivanova, R. Ivantsov, D. Velikanov, V. Zabluda, Y. Zubavichus, A. Veligzhanin, V. Zaikovskiy, S. Stepanov, A. Artemenko, J. Curély, J. Kliava, Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements, Journal of Applied Physics, 112 (2012) e084331. DOI: 10.1063/1.475924410.1063/1.4759244 Search in Google Scholar

[55]. D.A. Petrov, R.D. Ivantsov, S.M. Zharkov, D.A. Velikanov, M.S. Molokeeva, C.R. Lin, C.T. Tso, H.S. Hsu, Y.T. Tseng, E.S. Lin, I.S. Edelman, Magnetic and magneto-optical properties of Fe3O4 nanoparticles modified with Ag, Journal of Magnetism and Magnetic Materials 493 (2020) 165692. DOI: 10.1016/j.jmmm.2019.16569210.1016/j.jmmm.2019.165692 Search in Google Scholar

[56]. F. Zhao, B. Zhang, L. Feng, Preparation and magnetic properties of magnetite nanoparticles, Materials Letters 68 (2012) 112–114. DOI: 10.1016/j.matlet.2011.09.11610.1016/j.matlet.2011.09.116 Search in Google Scholar

[57]. S. Nigam, K. C. Barick, D. Bahadur, Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubic in for therapeutic applications, Journal of Magnetism and Magnetic Materials 323 (2011) 237–243. DOI: 10.1016/j.jmmm.2010.09.00910.1016/j.jmmm.2010.09.009 Search in Google Scholar

[58]. A. Roychowdhury, S. Prakash Pati, S. Kumar, D. Das, Effects of magnetite nanoparticles on optical properties of zinc sulfide in fluorescent-magnetic Fe3O4/ZnS nanocomposites, Powder Technology 254 (2014) 583–590. DOI: 10.1016/j.powtec.2014.01.07610.1016/j.powtec.2014.01.076 Search in Google Scholar

[59]. M.F.K. Ariffin, A. Idris, N.H.A. Ngadiman, Optimization of lipase immobilization on maghemite and its physico-chemical properties, Brazilian Journal of Chemical Engineering 36 (2019) 171–179. DOI: 10.1590/0104-6632.20190361s2018016810.1590/0104-6632.20190361s20180168 Search in Google Scholar

[60]. Y.H. Chen, Thermal properties of nanocrystalline goethite, magnetite, and maghemite, Journal of Alloys and Compounds 553 (2013) 194–198. DOI: 10.1016/j.jallcom.2012.11.10210.1016/j.jallcom.2012.11.102 Search in Google Scholar

[61]. L. Li, L.J. Yuan, W. Hong, L. Fan, L.B. Mao, L. Liu, Hybrid Fe3O4/MOFs for the adsorption of methylene blue and methyl violet from aqueous solution, Desalination and Water Treatment 55 (2015) 1973–1980. DOI: 10.1080/19443994.2014.93775110.1080/19443994.2014.937751 Search in Google Scholar

[62]. N. Quijorna, M. de Pedro, M. Romero, A. Andrés, Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry, Journal of Environmental Management 132 (2014) 278-286. DOI: 10.1016/j.jenvman.2013.11.01210.1016/j.jenvman.2013.11.01224321287 Search in Google Scholar

[63]. X. Yu, J. Zhou, Grain boundary in oxide scale during high-temperature metal processing, in Study of Grain Boundary Character, pp 59-77, IntechOpen (2017). DOI: 10.5772/6621110.5772/66211 Search in Google Scholar

[64]. J. Chen, H.S. Hsu, Y.H. Huang, Spin-dependent optical charge transfer in magnetite from transmitting optical magnetic circular dichroism, Physical Review B 98 (2018) e085141. DOI: 10.1103/PhysRevB.98.08514110.1103/PhysRevB.98.085141 Search in Google Scholar

[65]. J. Chen, H.S. Hsu, Y.H. Huang, Spin-dependent optical charge transfer in magnetite from transmitting optical magnetic circular dichroism, Physical Review B 98 (2018) 085141. DOI: 10.1103/PhysRevB.98.08514110.1103/PhysRevB.98.085141 Search in Google Scholar

[66]. K.J. Kim, H.S. Lee, M.H. Lee, S.H. Lee, Comparative magneto-optical investigation of d–d charge–transfer transitions in Fe3O4, CoFe2O4, and NiFe2O4, Journal of Applied Physics 91 (2002) 9974. DOI: 10.1063/1.148048210.1063/1.1480482 Search in Google Scholar

eISSN:
2286-038X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other