Cite

Adeleye A. O., Yerima M. B., Nkereuwem M. E., Onokebhagbe V. O., Sadiq I. S., Amoo A. O., Bate G. B., Shiaka G. P., Raji M. (2021): Bio‑enhanced removal of hydrocarbon contents from spent engine oil contaminated soil using Staphylococcus aureus and Bacillus cereus co‑culture. Agro‑Science 20: 80–90.10.4314/as.v20i3.11 Search in Google Scholar

Adeleye A. O., Nkereuwem M. E., Omokhudu G. I., Amoo, A. O., Shiaka, G. P., Yerima M. B. (2018): Effect of Microorganisms in the Bioremediation of Spent Engine Oil and Other Petroleum Related Environmental Pollution. Journal of Applied Science and Environmental Management 22: 157–167.10.4314/jasem.v22i2.1 Search in Google Scholar

Adeleye A. O., Yerima M. B., Nkereuwem M. E., Onokebhagbe V. O., Shiaka P. G., Amoo F. K., Adam I. K., Sadiq I. S., Olaleye A. A., Raji M., Aliyu A. (2020): Enhanced Degradation of Hydrocarbons in Spent Engine Oil Contaminated Soil by Pseudomonas aeruginosa and Alcaligenes faecalis. FUW Trends in Science & Technology Journal 5: 437–444. Search in Google Scholar

Adeleye A. O., Yerima M. B., Nkereuwem M. E., Onokebhagbe V. O., Shiaka P. G., Amoo F. K., Adam I. K. (2019): Effect of Organic Amendments on the Decontamination Potential of Heavy Metals by Staphylococcus aureus and Bacillus cereus in Soil Contaminated with Spent Engine Oil. Novel Research in Microbiology Journal 3: 471–484.10.21608/nrmj.2019.54352 Search in Google Scholar

Agarry S. E., Oladipupo O. O. (2012): Box‑Behnken design application to study enhanced bioremediation of artificially contaminated soil with spent engine oil using biostimulation strategy. International Journal of Energy and Environmental Engineering 3: 1–14.10.1186/2251-6832-3-31 Search in Google Scholar

Agbor R. B., Ekpo I. A., Kalu S. E., Bassey I. U., Okoi E. P., Ude E. O. (2015): Growth pattern of two crop species on bioremediated hydrocarbon polluted soils. Academic Journals 10: 58–63.10.5897/SRE2014.6110 Search in Google Scholar

Agbor R. B., Ekpo I. A., Udofia U. U., Okpako E. C., Ekanem E. B. (2012): Potentials of cocoa pod husk and plantain peels in the degradation of total petroleum hydrocarbon content of crude oil polluted soil. Archives of Applied Science Research 4: 1372–375. Search in Google Scholar

Antai S. P., Mgbomo E. (1989): Distribution of hydrocarbon utilizing bacteria in oil spill areas. Microbios Letters 40: 137–143. Search in Google Scholar

Bizecki Robson D., Knight J. D., Farrell R. E., Germida J. J. (2004): Natural revegetation of hydrocarbon‑contaminated soil in semi‑arid grasslands. Canadian Journal of Botany 82: 22–30.10.1139/b03-138 Search in Google Scholar

Boonchan S., Britz M. L., Stanley G. A. (2000): Degradation and Mineralization of High‑molecular‑weight Polycyclic Aromatic Hydrocarbons by Defined Fungal‑bacterial Co‑cultures. Applied and Environmental Microbiology 66: 1007–1019.10.1128/AEM.66.3.1007-1019.20009193610698765 Search in Google Scholar

Bouyoucos C. H. (1951): A recalibration of hydrometer method for making mechanical analysis of soils. Agronomy Journal 43: 434–438.10.2134/agronj1951.00021962004300090005x Search in Google Scholar

Bower C. A., Wilcox L. V. (1965): Soluble Salts. In: Black, C. A., et al., Methods of Soil Analysis, American Society of Agronomy Madison, pp. 933–940.10.2134/agronmonogr9.2.c11 Search in Google Scholar

Chibuike G. U. (2013): Use of mycorrhiza in soil remediation: A review. Academic Journals 8: 1679–1687.10.5897/SRE2013.5605 Search in Google Scholar

Doerr S. H., Shakesby R. A., Walsh R. (2000): Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth‑Science Reviews 51: 33–65.10.1016/S0012-8252(00)00011-8 Search in Google Scholar

Gao Y., Cheng Z., Ling W., Huang J. (2010): Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresource Technology 101: 6895–6901.10.1016/j.biortech.2010.03.12220403686 Search in Google Scholar

Harrier L. A., Watson C. A. (2004): The potential role of Arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil‑borne pathogens in organic and/or other sustainable farming systems. Pest Management Science 60: 149–157.10.1002/ps.82014971681 Search in Google Scholar

Hewelke E., Szatyłowicz J., Gnatowski T., Oleszczuk R. (2016): Effects of soil water repellency on moisture patterns in a degraded sapric histosol. Land Degradation and Development 27: 955–964.10.1002/ldr.2305 Search in Google Scholar

Ijah U. J. J., Antai S. P. (2003): Removal of Nigerian light crude oil in soil over a 12‑month period. International Biodeterioration and Biodegradation 51: 93–99.10.1016/S0964-8305(01)00131-7 Search in Google Scholar

Klamerus‑Iwan A., Błońska E., Lasota J., Kalandyk A., Waligórski P. (2015): Influence of oil contamination on physical and biological properties of forest soil after chainsaw use. Water, Air, and Soil Pollution 226: 389. doi:10.1007/s11270-015-2649-2.10.1007/s11270-015-2649-2462809626549912 Search in Google Scholar

Marschner H. (1995): Mineral nutrition of higher plants (2nd ed.). New York: Academic Press. Search in Google Scholar

McBride M. B. (1994): Environmental chemistry of soils. New York: Oxford University Press. Search in Google Scholar

Miller R. M., Jastrow J. D. (2000): Mycorrhizal Fungi Influence Soil Structure. In: Y. Kapulnik and D. D. Douds, Eds., Arbuscular Mycorrhizas: Physiology and Function, Kluwer Academic, Dordrecht, The Netherlands, pp. 3–18.10.1007/978-94-017-0776-3_1 Search in Google Scholar

Ndukwu B. N., Onweremadu E. U., Ahukaemere C. M., Ihem E. E., Nkwopara U. N., Osujieke D. N. (2015): Distribution and concentration of cadmium in automobile polluted soils in Owerri, South Eastern Nigeria. Nigerian Journal of Soil Science 25: 135–145. Search in Google Scholar

Nkereuwem M. E., Fagbola O., Okon I. E., Adeleye A. O., Nzamouhe M. (2020a): Bioremediation potential of mycorrhiza fungi in crude oil contaminated soil planted with Costus lucanusianus. Amazonian Journal of Plant Research 4: 441–455.10.26545/ajpr.2020.b00053x Search in Google Scholar

Nkereuwem M. E., Fagbola O., Okon I. E., Edem I. D., Adeleye A. O., Onokebhagbe V. O. (2020b): Influence of a mycorrhizal fungus and mineral fertilizer on the performance of Costus lucanusianus under crude oil contaminated soil. Novel Research in Microbiology Journal 4: 808–824.10.21608/nrmj.2020.95324 Search in Google Scholar

Ochei J. O., Kolhatkar A. A. (2008): Medical Laboratory Science: Theory and Practice. Tata McGraw Publishing Company Limited. Search in Google Scholar

Ogunjobi A. A., Ekanem J. O. (2017): Biodegradation of spent Lubricating Engine Oil in soil using organic and inorganic Amendments. Nigerian Journal of Science 15: 109–119. Search in Google Scholar

Okoh A I. (2006): Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. A review. Biotechnology and Molecular Biology 1: 38–50. Search in Google Scholar

Okolo J. C., Amadi E. N., Odu C. T. I. (2005): Effects of soil treatment containing poultry manure on crude oil degradation in sandy loam soil. Applied Ecology and Environmental Resource 3: 47–53.10.15666/aeer/0301_047053 Search in Google Scholar

Olofin E. A. (1987): Some aspects of the physical geography of the Kano region and related human responses. Departmental Lecture Note Series: Geography Department, Bayero University. Debis Standard Printers, Kano, Nigeria. Search in Google Scholar

Onuoha S. C., Olugbue V. U., Uraku J. A., Uchendu D. O. (2011). Biodegradation potentials of hydrocarbon degraders from waste‑lubricating oil spilled soils in Ebonyi State, Nigeria. International Journal of Agriculture and Biology 13: 586–590. Search in Google Scholar

Ramakrishnan B., Megharaj M., Venkateswarlu K. (2010): The impacts of environmental pollutants on microalgae and cyanobacteria. Critical Reviews in Environmental Science and Technology 40: 699–821.10.1080/10643380802471068 Search in Google Scholar

Rodriguez‑Rodriguez N., Rivera‑Cruz M. C., Trujillo‑Narcia A., Almaraz‑Suarez J. J., Salgado‑Garcia S. (2016): Spatial distribution of oil and biostimulation through the rhizosphere of Leersia hexandra in degraded soil. Water, Air and Soil Pollution 227: 319. Retrieved from https://link.springer.com/article/10.1007%2Fs11270-016-3030-910.1007/s11270-016-3030-9 Search in Google Scholar

Roy J. L., Gill W. B. (2000): Investigation into mechanisms leading to the development, spread and persistence of soil water repellency following contamination by crude oil. Canadian Journal of Soil Science 80: 595–606.10.4141/S99-091 Search in Google Scholar

Soretire A. A., Oshiobugie A. A., Thanni B. M., Balogun S. A., Ewetola J. M. (2017): Bioremediation of soil contaminated with crude oil using fresh and decomposed animal manure. Nigerian Journal of Biotechnology 34: 12–18.10.4314/njb.v34i1.2 Search in Google Scholar

Szatyłowicz J., Gnatowski T., Szejba D., Oleszczuk R., Brandyk T., Kechavarzi C. (2007): Moisture content variability in drained fen soil. In T. Okruszko, E. Maltby, J. Szatyłowicz, D. Swiatek, and W. Kotowski (Eds.): Wetland’s monitoring, modelling and management (pp. 113–120). London: Taylor and Francis Group. Search in Google Scholar

Tiquia S. M., Tam N. F. Y. (2002): Characterization and compositing of poultry litter in forced aeration piles. Process Biochemistry 37: 869–880.10.1016/S0032-9592(01)00274-6 Search in Google Scholar

Uchendu U. I., Ogwo P. A. (2014): The Effect of Spent Engine Oil Discharge on Soil Properties in an Automobile Mechanic Village in Nekede, Imo State, Nigeria. IOSR Journal of Environmental Science Toxicology and Food Technology 8: 28–32.10.9790/2402-081112832 Search in Google Scholar

USEPA (2003): Method 8015C (SW‑846): Non‑halogenated Organics Using GC/FID, Revision 4. Washington, DC. Retrieved from https://www.epa.gov/esam/epa-method-8015d-sw-846-nonhalogenated-organics-using-gcfid Search in Google Scholar

USEPA (2017): Test method for evaluating solid wastes, physical and chemical methods. SW 846 method. Retrieved from www.epa.gov/hw-846/846-testmethod-3540c-soxhlet extraction_httml. Search in Google Scholar

Uzoma K., Nkereuwem M. E., Adamu U. K., Adeleye A. O., Abe M. (2021): Effect of Mycorrhizal Inoculation on Growth and Nutrients Uptake of Maize Grown on Crude Oil Contaminated Soil. Indonesian Journal of Social and Environmental Issues (IJSEI) 2: 176–187.10.47540/ijsei.v2i2.264 Search in Google Scholar

Yuniati M. D. (2018): Bioremediation of petroleum contaminated soil: A Review IOP Conference Series: Earth and Environmental Science. Retrieved from https://iopscience.iop.org/article/10.1088/1755-1315/118/1/01206310.1088/1755-1315/118/1/012063 Search in Google Scholar

Zabaloy M. C., Garland J. L., Gomez M. A. (2008): An integrated approach to evaluate the impact of the herbicides glyphosate, 2‑4‑D and Metsulfuron‑methyl on soil microbial communities in the Pampas region, Argentina. Applied Soil Ecology 40: 1–12.10.1016/j.apsoil.2008.02.004 Search in Google Scholar

Zhao X., Fan F., Zhou H., Zhang P., Zhao G. (2018): Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons. Bioprocess and Biosystems Engineering 41: 871–883.10.1007/s00449-018-1921-429546466 Search in Google Scholar

eISSN:
1801-0571
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, Plant Science