Cite

CELMS, A. – RATKEVICS, A. – BAUMANE, V. 2014. Global navigation satellite system as technical solution element of farmland processing in Latvia. In 13th International Scientific Conference “Engineering for Rural Development”: Proceedings, Jelgava, Latvia, no. 13, pp. 44–50. Search in Google Scholar

FINGER, R. – SWINTON, S. M. – EL BENNI, N. 2019. Precision farming at the nexus of agricultural production and the environment. In Annual Review of Resource Economics, vol. 11, pp. 313–335. Search in Google Scholar

From precision farming to “smart farms”. 2019. (In Russian: Ot tochnogo zemledelija do «umnyh ferm»). Available at: https://www.matritca.kz/news/62674-ottochnogo-zemledeliya-do-umnyh-ferm.html Search in Google Scholar

GARCIA, L. C. – VAN DER MEER, R. W. – DE SOUZA, N. M. – JUSTINO, A. – NETO, P. H. W. 2016. Seeding maneuvers using navigation system. In Engenharia Agricola, vol. 36, no. 2, pp. 361–366. Search in Google Scholar

JI, C. – ZHOU, J. 2014. Current situation of navigation technologies for agricultural machinery. In Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, vol. 45, no. 9, pp. 44–54. Search in Google Scholar

KELC, D. – STAJNKO, D. – BERK, P. – RAKUN, J. – VINDIŠ, P. – LAKOTA, M. 2019. Reduction of environmental pollution by using RTK-navigation in soil cultivation. In International Journal of Agricultural and Biological Engineering, vol. 12, no. 5, pp. 173–178. Search in Google Scholar

KESKIN, M. – HAN, Y. J. – DODD, R. B. 1999. A review of yield monitoring instrumentation applied to the combine harvesters for precision agriculture purposes. In 7th International Congress on Agricultural Mechanization and Energy 26–27 May 1999, pp. 426–431. Search in Google Scholar

LOWENBERG-DEBOER, J. A. – ERICKSON, B. B. 2019. Setting the record straight on precision agriculture adoption. In Agronomy Journal, vol. 111, no. 4, pp. 1552–1569. Search in Google Scholar

SALIMI, M. – POURDARBANI, R. – NOURI, B. A. 2020. Factors affecting the adoption of agricultural automation using Davis’s acceptance model (case study: Ardabil). In Acta Technologica Agriculturae, vol. 23, no. 1, pp. 30–39. Search in Google Scholar

Standard GOST 20915-2011: 2013. Testing of agricultural machinery. Methods for determining test conditions. 27 p. Search in Google Scholar

Standard GOST 31345-2007: 2008. Tractor seeders. Test methods. Impl. 1.1.2009. Moscow : FSUE, Standardinform, 53 p. Search in Google Scholar

Standard GOST R 53053-2008: 2009. Machines for plant protection. Sprayers. Test methods. Impl. 1.1.2009. Moscow : Standardinform, 42 p. Search in Google Scholar

Standard GOST 33736-2016: 2017. Machine for deep tillage. Test methods. Impl. 1.1.2018. Moscow : Standardinform, 39 p. Search in Google Scholar

Standard GOST 28301-2007: 2007. Combine harvesters. Test methods. Impl. 28.4.2010. Minsk : Eurasian Council for Standardization, Metrology and Certification, 53 p. Search in Google Scholar

Standard GOST R 52777-2007: 2007. Agricultural machinery. Methods of energy assessment. Impl. 13.11.2007. Moscow : Standardinform, 7 p. Search in Google Scholar

Standard GOST 24055-2016: 2018. Agricultural machinery. Methods of operational and technological assessment. Impl. 1.1.2018. Moscow : Standardinform, 39 p. Search in Google Scholar

Standard ST RK GOST R 53056-2010: 2010. Agricultural machinery. Methods of economic assessment. Impl. 4.10.2010. Astana : Committee for Technical Regulation and Metrology of the Ministry of Industry and Trade of the Republic of Kazakhstan, 26 p. Search in Google Scholar

SHARDA, A. – FULTON, J. P. – MCDONALD, T. P. 2015. Impact of response characteristics of an agricultural sprayer control system on nozzle flow stabilization under simulated field scenarios. In Computers and Electronics in Agriculture, vol. 112, pp. 139–148. Search in Google Scholar

SHANNON, K. D. – CLAY, D. E. – KITCHEN, N. R. 2018. Precision agriculture basics. Madison, WI : ASA, CSSA, and SSSA, 265 pp. ISBN 9780891183662. Search in Google Scholar

TSIRULEV, A. P. – BOROVKOVA, A. S. – IKSANOV, M. R. 2008. Implementation of the project on the development of methods for using precision farming tools for monitoring agricultural land in the Samara region: report on the implementation of scientific and technical work (interim)/Fund “Agricultural training” Kinel, 68 pp. (In Russian: Realizacija proekta po razrabotke metodiki ispol’zovanija sredstv tochnogo zemledelija dlja monitoringa sel’skohozjajstvennyh ugodij Samarskoj oblasti [Tekst]: otchet po vypolneniju nauchno-tehnicheskoj raboty (promezhutochnyj)/ Fond «Sel‘skohozjajstvennogo obuchenija»). Search in Google Scholar

VECCHIO, Y. – DE ROSA, M. – ADINOLFI, F. – BARTOLI, L. – MASI, M. 2020. Adoption of precision farming tools: A context-related analysis. In Land Use Policy, vol. 94, article no. 104481. Search in Google Scholar

YAKUSHEV, V. V. 2016. Precision farming: theory and practice. St. Petersburg, Russia : Agrophysical Research Institute of the Russian Academy of Agricultural Science, 364 pp. ISBN 9785905200311. (In Russian: Tochnoe zemledelie: Teorija i praktika). Search in Google Scholar

YAKUSHEV, V. P. – YAKUSHEV, V. V. 2007. Information support of precision farming: monograph. St. Petersburg, Russia : PINP RAS, 384 pp. (In Russian: Informacionnoe obespechenie tochnogo sursosberegajushhie tehnologii v zemledelii). Search in Google Scholar

eISSN:
1338-5267
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other