1. bookVolume 9 (2022): Issue 1 (March 2022)
Journal Details
License
Format
Journal
eISSN
2603-347X
First Published
15 Dec 2015
Publication timeframe
1 time per year
Languages
English
access type Open Access

Geomorphology of the Beqaa Valley, Lebanon and Anti-Lebanon Mountains

Published Online: 18 Jun 2022
Volume & Issue: Volume 9 (2022) - Issue 1 (March 2022)
Page range: 1 - 22
Journal Details
License
Format
Journal
eISSN
2603-347X
First Published
15 Dec 2015
Publication timeframe
1 time per year
Languages
English
Abstract

Geomorphology of Lebanon presents a unique pattern of contrasting landforms. These include two notable mountain ranges, the Lebanon and Anti-Lebanon Mountains, the Beqaa Valley, the elongated coastal area and a significant amount of karst relief forms. This study focuses on the investigation of the topographic and geologic setting of Lebanon by visualizing datasets covering Lebanon and Anti-Lebanon mountains and the Beqaa Valley. Data were collected using the open source repositories of the high-resolution data (GEBCO, ETOPO1, DEM embedded in R). Three 3D models of the relief of the country are presented based on the ‘grdview’ package of GMT with azimuth rotations of the view point at 205°/30° and 165°/30°. The geologic map is based on the compiled datasets of the USGS. The R based modelling allowed division of the raster grid into several geomorphological zones according to the slope steepness and aspect orientation. The extreme elevations of the study area range from -2007 m and 2973 m. The key contribution of this work is the topographic and geologic data synthesis for 2D and 3D modelling of Lebanon. Another aspect concerns technical integration of GMT and R scripting approaches with QGIS mapping into the cartographic framework for visualizing of the Lebanese topography as a multi-tool approach. For the future similar studies on Lebanon this paper can serve as a guide for completing a project on the multi-source 2D and 3D data mapping as a conceptual foundation for research on Lebanese environment.

Keywords

[1] Abou el-Enin, H.S., Essays on the geomorphology of the Lebanon, Beirut Arab University Press, P. 1 A, 1973. Search in Google Scholar

[2] ACSAD, Soil Map of Arab Countries-Soil Map of Syria and Lebanon. The Arab Center for the Studies of Arid Zones and Drylands, Damascus, 1985. Search in Google Scholar

[3] Alqudah, M.; Monzer, A.; Sanjuan, J.; Salah, M.K.; Alhejoj, I.K., Calcareous nannofossil, nummulite and ostracod assemblages from Paleocene to Miocene successions in the Bekaa Valley (Lebanon) and its paleogeographic implications, Journal of African Earth Sciences, 2019, 151, 82–94. https://doi.org/10.1016/j.jafrearsci.2018.12.001. Search in Google Scholar

[4] Amante, C.; Eakins, B.W., ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum, 19, 2009. Search in Google Scholar

[5] Awad, M.; Jomaa, I.; Arab, F., Improved Capability in Stone Pine Forest Mapping and Management in Lebanon Using Hyperspectral CHRIS-Proba Data Relative to Landsat ETM+, Photogrammetric Engineering and Remote Sensing, 2014, 80, 725–732. Search in Google Scholar

[6] Aziz, D., Le Cèdre du Liban, Beirut. Editions Arziates, Beirut, Lebanon, 24–31, 1996. Search in Google Scholar

[7] Bariteau, M., Cèdres de l’Atlas et du Liban. In: E. Teissier du Cros (Ed.). Variétés forestières du futur. Réflexion à l’horizon 2020-2030, 2001, hal-02826492, 67–69. Search in Google Scholar

[8] Beydoun, Z.R., Observations on geomorphology, transportation and distribution of sediments in western Lebanon and its continental shelf and slope regions, Marine Geology, 1976, 21(4), 311–324. https://doi.org/10.1016/0025-3227(76)90013-X. Search in Google Scholar

[9] Bou Kheir, R.; Shomar, B.; Greve, M.B.; Greve, M.H., On the quantitative relationships between environmental parameters and heavy metals pollution in Mediterranean soils using GIS regression-trees: The case study of Lebanon, Journal of Geochemical Exploration, 2014, 147 (Part B), 250–259. https://doi.org/10.1016/j.gexplo.2014.05.015. Search in Google Scholar

[10] Butler, R.W.H.; Spencer, S., Landscape evolution and the preservation of tectonic landforms along the northern Yammouneh Fault, Lebanon, Geological Society, London, Special Publications, 1999, 162(1), 143. http://dx.doi.org/10.1144/GSL.SP.1999.162.01.12.10.1144/GSL.SP.1999.162.01.12 Search in Google Scholar

[11] Carton, H.; Singh, S.C.; Tapponnier, P.; Elias, A.; Briais, A.; Sursock, A.; Jomaa, R.; King, G.C.P.; Daëron, M.; Jacques, E.; Barrier, L., Seismic evidence for Neogene and active shortening offshore of Lebanon (Shalimar cruise), Journal of Geophysical Research, 2009, 114, B07407. https://doi.org/10.1029/2007JB005391. Search in Google Scholar

[12] Chalhoub, M.; Vachier, P.; Coquet, Y.; Darwich, T.; Dever, L.; Mroueh, M., Caractérisation des propriétés hydrodynamiques d’un sol de la Bekaa (Liban) sur les rives du fleuve Litani, Etude et Gestion des Sols, 2009, 16(2), 67–84. Search in Google Scholar

[13] Cheddadi, R.; Khater, C., Climate change since the last glacial period in Lebanon and the persistence of Mediterranean species, Quaternary Science Reviews, 2016, 150, 146–157. https://doi.org/10.1016/j.quascirev.2016.08.010. Search in Google Scholar

[14] Conard, N.J.; Bretzke, K.; Deckers, K.; Masri, M.; Napierala, H.; Riehl, S.; Stahlschmidt, M.; Kandel, A.W., Natufian Lifeways in the Eastern Foothills of the Anti-Lebanon Mountains. In: Bar-Yosef, O. and F.R. Valla (Eds.). Natufian Foragers in the Levant – Terminal Pleistocene Social Changes in Western Asia. Chapter: Natufian Lifeways in the Eastern Foothills of the Anti-Lebanon Mountains, International Monographs in Prehistory. Edition: Archaeological Series, 2013, 19, 1–16. Search in Google Scholar

[15] Cori, B., Spatial dynamics of Mediterranean coastal regions, Journal of Coastal Conservation, 1999, 5, 105–112. https://doi.org/10.1007/BF02802747. Search in Google Scholar

[16] Davie, M.F., La cartographie géomorphologique au Liban. Inventaire et perspectives. Annales de Géographie de l’Université Saint-Joseph, Université Saint-Joseph, Beyrouth (Liban), 1980, 1–26. hal-01078313. Search in Google Scholar

[17] Develle, A.-L.; Gasse, F.; Vidal, L.; Williamson, D.; Demory, F.; Van Campo, E.; Ghaleb, B.; Thouveny, N., A 250 ka sedimentary record from a small karstic lake in the Northern Levant (Yammoûneh, Lebanon): Paleoclimatic implications, Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305(1–4), 10–27. https://doi.org/10.1016/j.palaeo.2011.02.008. Search in Google Scholar

[18] Doe, J., Slope Aspect Determination, Soil Survey Horizons, 1971, 12, 24–24. https://doi.org/10.2136/sh1971.3.0024. Search in Google Scholar

[19] Dubertret, L., Carte Geologique au l:50,000, Feuille de Beyrouth, avec Notice Explicative. Republique Libanaise, Ministere des Travaux Publique, Beyrouth, 66 p., 1945. Search in Google Scholar

[20] Dubertret, L., Carte géologique du Liban au 1:200,000 avec notice explicative. République Libanaise. Ministère des Travaux Publics, Beyrouth, 74 p., 1955. Search in Google Scholar

[21] Dubertret, L., Liban, Syrie et bordure des pays voisins. Première partie. Tableau stratigraphique avec carte géologique au millionième, Notes et Mém. Moyen-Orient, 1966, 8, 251–358. Search in Google Scholar

[22] Dubertret L., Introduction à la carte geologique à 1/50000 du Liban, Notes et Mém. Moyen-Orient, 1975, 13, 345–403. Search in Google Scholar

[23] Edgell, H.S., Karst and hydrogeology of Lebanon, Carbonates and Evaporites, 1997, 12(2), 220–235. https://doi.org/10.1007/BF03175419. Search in Google Scholar

[24] El-Fadel, M.; Zeinati, M.; Jamali, D., Water resources management in Lebanon: institutional capacity and policy options, Water Policy, 2001, 3(5), 425–448. https://doi.org/10.1016/S1366-7017(01)00079-4. Search in Google Scholar

[25] Fleisch, H.; Sanlaville, P., La plage de 52m et son acheuléen a Ras Beyrouth et a L’ouadi Aabet (Liban), Paléorient, 1974, 2(1), 45–85. http://www.jstor.org/stable/41489377.10.3406/paleo.1974.4174 Search in Google Scholar

[26] Gauger, S.; Kuhn, G.; Gohl, K.; Feigl, T.; Lemenkova, P.; Hillenbrand, C., Swath bathymetric mapping, Reports on Polar and Marine Research, 2007, 557, 38–45. https://doi.org/10.6084/m9.figshare.7439231. Search in Google Scholar

[27] GEBCO Compilation Group, GEBCO 2020 Grid, 2020. https://doi.org/10.5285/a29c5465-b138-234de053-6c86abc040b9. Search in Google Scholar

[28] Gohl, K.; Eagles, G.; Udintsev, G.; Larter, R.D.; Uenzelmann-Neben, G.; Schenke, H.-W.; Lemenkova, P.; Grobys, J.; Parsiegla, N.; Schlueter, P.; Deen, T.; Kuhn, G.; Hillenbrand, C.-D., Tectonic and sedimentary processes of the West Antarctic margin of the Amundsen Sea embayment and PineIsland Bay, 2nd SCAR Open Science Meeting, 12–14 July 2006, Hobart, Australia, 2006a. https://doi.org/10.6084/m9.figshare.7435484. Search in Google Scholar

[29] Gohl, K.; Uenzelmann-Neben, G.; Eagles, G.; Fahl, A.; Feigl, T.; Grobys, J.; Just, J.; Leinweber, V.; Lensch, N.; Mayr, C.; Parsiegla, N.; Rackebrandt, N.; Schlüter, P.; Suckro, S.; Zimmermann, K.; Gauger, S.; Bohlmann, H.; Netzeband, G.; Lemenkova, P., Crustal and Sedimentary Structures and Geodynamic Evolution of the West Antarctic Continental Margin and Pine Island Bay. Expeditions programm Nr. 75 ANT XXIII/4 ANT XXIII/5, 2006b, 11–12. https://doi.org/10.13140/RG.2.2.16473.36961. Search in Google Scholar

[30] Hajar, L.; Haïdar-Boustani, M.; Khater, C.; Cheddadi, R., Environmental changes in Lebanon during the Holocene: Man vs. climate impacts, Journal of Arid Environments, 2010a, 74(7), 746–755. https://doi.org/10.1016/j.jaridenv.2008.11.002. Search in Google Scholar

[31] Hajar, L., François, L.; Khater, C.; Jomaa, I.; Déqué, M.; Cheddadi, R., Cedrus libani (A. Rich) distribution in Lebanon: Past, present and future, Comptes Rendus Biologies, 2010b, 333(8), 622–630. https://doi.org/10.1016/j.crvi.2010.05.003.20688283 Search in Google Scholar

[32] Hijmans, R.J.; van Etten, J., raster: Geographic analysis and modeling with raster data, R package version 2.0-12, 2012. http://CRAN.R-project.org/package=raster. Search in Google Scholar

[33] Heybroek, F., La geologie d’une partie du Liban Sud, Leidse geologische mededelingen, 1942, 12, 251–470. Search in Google Scholar

[34] Ichoku, C.; Karnieli, A., A review of mixture modeling techniques for sub-pixel land cover estimation, Remote Sensing Reviews, 1996, 13(3–4), 161–186. https://doi.org/10.1080/02757259609532303. Search in Google Scholar

[35] Jaillet, S.; Delannoy, J.-J.; Génuite, K.; Hobléa, F.; Monney, J., L’image topographique du karst et des grottes: représentations 2D et technologies 3D, entre réalité et imaginaire, Géomorphologie, relief, processus, environnement, 2019, 25(3). https://doi.org/10.4000/geomorphologie.13488. Search in Google Scholar

[36] Jansen, L.J.M.; Di Gregorio, A., Obtaining land-use information from a remotely sensed land cover map: results from a case study in Lebanon, International Journal of Applied Earth Observation and Geoinformation, 2004, 5(2), 141–157. https://doi.org/10.1016/j.jag.2004.02.001. Search in Google Scholar

[37] Jomaa I., Analyze diachronique de la fragmentation des forêts du Liban, Thesis, Université Paul Sabatier, Toulouse, 2008. Search in Google Scholar

[38] Jomaa, I.; Auda, Y.; Abi Saleh, B.; Hamze, M.; Safi, S., Landscape Spatial Dynamics over 38 Years under Natural and Anthropogenic Pressures in Mount Lebanon, Landscape and Urban Planning, 2008, 87, 67–75. https://doi.org/10.1016/j.landurbplan.2008.04.007. Search in Google Scholar

[39] Jomaa, I.; Khater, C., Mapping Glitches of Juniper Forests in Lebanon under Natural Conditions and Anthropogenic Activities, Open Journal of Forestry, 2019, 9, 168–181. https://doi.org/10.4236/ojf.2019.92008. Search in Google Scholar

[40] Jomaa, I.; Saab, M.T.A.; Skaf, S.; El Haj, N.; Massaad, R., Variability in Spatial Distribution of Precipitation Overall Rugged Topography of Lebanon, Using TRMM Images, Atmospheric and Climate Sciences, 2019, 9, 369–380. https://doi.org/10.4236/acs.2019.93026. Search in Google Scholar

[41] Khair, K., Geomorphology and seismicity of the Roum Fault as one of the active branches of the Dead Sea Fault System in Lebanon, Journal of Geophysical Research, 2001, 106(B3), 4233–4245. https://doi.org/10.1029/2000JB900287. Search in Google Scholar

[42] Khawlie, M.R.; Hinai, K., Geology and production of construction material resources of Lebanon: a preliminary study, Engineering Geology, 1980, 15(3–4), 223–232. https://doi.org/10.1016/0013-7952(80)90036-8. Search in Google Scholar

[43] Khawlie, M.R.; Hassanain, H.I., Engineering geology of the Hammana landslides, Lebanon, Quarterly Journal of Engineering Geology and Hydrogeology, 1984, 17(2), 137. http://dx.doi.org/10.1144/GSL.QJEG.1984.017.02.0510.1144/GSL.QJEG.1984.017.02.05 Search in Google Scholar

[44] Khuri, S., Shmoury, M.; Baalbaki, R.; Maunder, M.; Talhouk, S.N., Conservation of the Cedrus Libani populations in Lebanon: History, current status and experimental application of somatic embryogenesis, Biodiversity and Conservation, 2000, 9, 1261–1273. https://doi.org/10.1023/A:1008936104581. Search in Google Scholar

[45] Klaučo, M., Gregorová, B.; Stankov, U.; Marković, V.; Lemenkova, P., Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area, Open Geosciences, 2013a, 5(1), 28–42. https://doi.org/10.2478/s13533-012-0120-0. Search in Google Scholar

[46] Klaučo, M., Gregorová, B.; Stankov, U.; Marković, V.; Lemenkova, P., Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. – In: Environmental and Climate Technologies, October 14, 2013. Riga, Latvia, 2013b. https://doi.org/10.13140/RG.2.2.23026.96963. Search in Google Scholar

[47] Klaučo, M., Gregorová, B.; Stankov, U.; Marković, V.; Lemenkova, P., Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. In: Ecology and Environmental Protection. March 19–20, 2014, Minsk, Belarus, 85–90, 2014. https://doi.org/10.6084/m9.figshare.7434200. Search in Google Scholar

[48] Klaučo, M., Gregorová, B.; Koleda, P.; Stankov, U.; Marković, V.; Lemenkova, P., Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region, Environmental Engineering and Management Journal, 2017, 2(16), 449–458. https://doi.org/10.30638/eemj.2017.045. Search in Google Scholar

[49] Klein, K.M., Lebanon mountain. – The Encyclopedia of Ancient History. R.S. Bagnall, K. Brodersen, C.B. Champion, A. Erskine and S.R. Huebner (eds.), 2012 https://doi.org/10.1002/9781444338386.wbeah14180. Search in Google Scholar

[50] Lamouroux, M., Le karst libanais: sols de karst et altérations des roches carbonatées. Mémoires et Documents, Phénomènes karstiques, 1974, 15(2), 15–26. http://www.documentation.ird.fr/hor/fdi:29456. Search in Google Scholar

[51] Lemenkov, V.; Lemenkova, P., Using TeX Markup Language for 3D and 2D Geological Plotting, Foundations of Computing and Decision Sciences, 2021a, 46(3), 43–69. https://doi.org/10.2478/fcds-2021-0004. Search in Google Scholar

[52] Lemenkov, V., Lemenkova, P., Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment, Civil and Environmental Engineering Reports, 2021b, 31(2), 63–84. https://doi.org/10.2478/ceer-2021-0020. Search in Google Scholar

[53] Lemenkova, P., Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente, 2011. https://doi.org/10.13140/RG.2.2.16945.22881. Search in Google Scholar

[54] Lemenkova, P.; Promper, C.; Glade, T., Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria, In: Eberhardt, E., Froese, C., Turner, A. K. and Leroueil, S. (Eds.). Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Canada, Banff, 2012, 279–285. https://doi.org/10.6084/m9.figshare.7434230. Search in Google Scholar

[55] Lemenkova, P., Monitoring Changes in Agricultural Landscapes of Central Europe, Hungary: Application of ILWIS GIS for Image Processing, In: Geoinformatics: Theoretical and Applied Aspects. Ukraine, Kiev, May 13–16, 2013. https://doi.org/10.3997/2214-4609.20142479. Search in Google Scholar

[56] Lemenkova, P., Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language, Geodesy and Cartography, 2019a, 45(2), 57–84. https://doi.org/10.3846/gac.2019.3785. Search in Google Scholar

[57] Lemenkova, P., Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean, Reports on Geodesy and Geoinformatics, 2019b, 108, 9–22. https://doi.org/10.2478/rgg-2019-0008. Search in Google Scholar

[58] Lemenkova, P., GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean, Geographia Technica, 2019c, 14(2), 39–48. https://doi.org/10.21163/GT_2019.142.04. Search in Google Scholar

[59] Lemenkova, P., Geomorphological modelling and mapping of the Peru-Chile Trench by GMT, Polish Cartographical Review, 2019d, 51(4). 181–194. https://doi.org/10.2478/pcr-2019-0015. Search in Google Scholar

[60] Lemenkova, P., Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean, Miscellanea Geographica, 2020a, 25(3), 1–13. https://doi.org/10.2478/mgrsd-2020-0038. Search in Google Scholar

[61] Lemenkova, P., Geomorphology of the Puerto Rico Trench and Cayman Trough in the Context of the Geological Evolution of the Caribbean Sea, Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia, 2020b, 75, 115–141. https://doi.org/10.17951/b.2020.75.115-141. Search in Google Scholar

[62] Lemenkova, P., Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT, Bulletin of Geography. Physical Geography Series, 2020c, 18(1), 41–60. https://doi.org/10.2478/bgeo-2020-0004. Search in Google Scholar

[63] Lemenkova, P., GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset, Geodesy and Cartography, 2020d, 46(3), 98–112. https://doi.org/10.3846/gac.2020.11524. Search in Google Scholar

[64] Lemenkova, P., Geodynamic setting of Scotia Sea and its effects on geomorphology of South Sandwich Trench, Southern Ocean, Polish Polar Research, 2021a, 42(1), 1–23. https://doi.org/10.24425/ppr.2021.136510. Search in Google Scholar

[65] Lemenkova, P., The visualization of geophysical and geomorphologic data from the area of Weddell Sea by the Generic Mapping Tools, Studia Quaternaria, 2021b, 38(1), 19–32. https://doi.org/10.24425/sq.2020.133759. Search in Google Scholar

[66] Maalouf, R.P., Atlas du Liban. Confins, 2008, 4, 5122. https://doi.org/10.4000/confins.5122. Search in Google Scholar

[67] Makhzoumi, J.; Chmaitelly, H.; Lteif, C., Holistic conservation of bio-cultural diversity incoastal Lebanon: A landscape approach, Journal of Marine and Island Cultures, 2012, 1, 27–37.http://dx.doi.org/10.1016/j.imic.2012.04.003.10.1016/j.imic.2012.04.003 Search in Google Scholar

[68] Maksoud, S., Granier, B.; Gèze, R.; Alméras, Y.; Toland, C.; Azar, D., The Jurassic/Cretaceous boundary in Lebanon. Revision of the Salima Formation, Cretaceous Research, 2020, 107, 104268. https://doi.org/10.1016/j.cretres.2019.10426. Search in Google Scholar

[69] Mouterde, P., Nouvelle flore du Liban et de la Syrie. Dar el-Machreq, 1983. Search in Google Scholar

[70] Nader, F., Swennen, R.; Ottenburgs, R., Karst-meteoric dedolomitization in Jurassic carbonates, Lebanon, Geologica Belgica, 2003, 6(1–2), 3–23. URL: https://popups.uliege.be/1374-8505/index.php?id=2086. Search in Google Scholar

[71] Nakhoul, J., Fernandez, C.; Bousquet-Mélou, A.; Nemer, N.; Abboud, J.; Prévosto, B., Vegetation dynamics and regeneration of Pinus pinea forests in Mount Lebanon: Towards the progressive disappearance of pine, Ecological Engineering, 2020, 152, 105866. https://doi.org/10.1016/j.ecoleng.2020.105866. Search in Google Scholar

[72] Nassif, M.-H., Groundwater Governance in the Central Bekaa Lebanon, Technical Report, 130 p., 2016. Search in Google Scholar

[73] Nicod J.; Sanlaville, P., Etude géomorphologique de la région littorale libanaise, In: Méditerranée, deuxième série, 1978, 1–2, 134–135. https://www.persee.fr/doc/medit_0025-8296_1978_num_32_1_1778. Search in Google Scholar

[74] Pasquier J., De la patrimonialisation du karst libanais: étude du site Unesco de la vallée de la Qadisha, Nord-Liban, Karstologia: revue de karstologie et de spéléologie physique, Le karst du Yucatan (Mexique), 2010, 55, 39-48. https://doi.org/10.3406/karst.2010.2669. Search in Google Scholar

[75] Pollastro, R.M.; Karshbaum, A.S.; Viger, R.J., Maps showing geology, oil and gas fields and geologic provinces of the Arabian Peninsula, U.S. Geological Survey Open-File Report, 1999, 97-470-B: 14. https://doi.org/10.3133/ofr97470B. Search in Google Scholar

[76] QGIS.org, QGIS Geographic Information System. QGIS Association. http://www.qgis.org 2021. Search in Google Scholar

[77] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/ 2020. Search in Google Scholar

[78] RStudio Team, RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA. https://www.RStudio.com/ 2017. Search in Google Scholar

[79] Salah, M.K.; Alqudah, M.; David, C., Petrophysical and acoustic assessment of carbonate rocks, Zahle area, central Lebanon, Bulletin of Engineering Geology and the Environment, 2020, 79, 5455–5475. https://doi.org/10.1007/s10064-020-01900-0. Search in Google Scholar

[80] Schenke, H.W.; Lemenkova, P., Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See, Hydrographische Nachrichten, 2008, 81, 16–21. https://doi.org/10.6084/m9.figshare.7435538. Search in Google Scholar

[81] Shaban, A., Analyzing climatic and hydrologic trends in Lebanon, Journal of Environmental Science and Engineering, 2011, 3(5), 483–492. Search in Google Scholar

[82] Shaban, A., Geomorphological and Geological Aspects of Wetlands in Lebanon, In: The 3rd International Geography Symposium, Kemer-Antalya, Turkey, 10-13 June 2013. Abstract, 2013. Search in Google Scholar

[83] Shaban, A.; Darwich, T.; El Hage, M., Studying Snowpack-Related Characteristics on Lebanon Mountains, International Journal of Water Sciences 1–11, 2013. https://doi.org/10.5772/57435. Search in Google Scholar

[84] Shaban, A.; Drapeau, L.; Telesca, L.; Amacha, N.; Ghandour, A., Influence of snow cover on water capacity in the Qaraaoun Reservoir, Lebanon, Arabian Journal of Geosciences, 2021, 14, 1–10. https://doi.org/10.1007/s12517-020-06295-6. Search in Google Scholar

[85] Suetova, I.A.; Ushakova, L.A.; Lemenkova, P., Geoinformation mapping of the Barents and Pechora Seas, Geography and Natural Resources, 2005, 4, 138–142. https://doi.org/10.6084/m9.figshare.7435535 Search in Google Scholar

[86] Tennekes, M., tmap: Thematic Maps in R, Journal of Statistical Software, 2012, 84(6), 1–39, 2018.10.18637/jss.v084.i06 Search in Google Scholar

[87] Verdeil, E., Faour, G.; Hamzé, M., Atlas du liban. Les nouveaux défis. 2nd Ed. IFPO/CNRS Liban. ISBN: 978-2-35159-717-0, 106 pp., 2016.10.4000/books.ifpo.10709 Search in Google Scholar

[88] Veyret P.; de Vaumas, E., Le Liban (Montagne libanaise, Bekaa, Anti-Liban, Hermou, Haute Galilée libanaise). Etude de géographie physique, Revue de géographie alpine, 1955, 43(4), 859–860. https://www.persee.fr/doc/rga_0035-1121_1955_num_43_4_1207_t1_0859_0000_1. Search in Google Scholar

[89] Walley, C., The Lithostratigraphy of Lebanon: A Review, Lebanese Scientific Research Reports, 1997, 10(1), 81–108. Search in Google Scholar

[90] Walley, C.D., Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region, Tectonophysics, 1998, 298(1–3), 37–62. https://doi.org/10.1016/S0040-1951(98)00177-2. Search in Google Scholar

[91] Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D., The Generic Mapping Tools version 6, Geochemistry, Geophysics, Geosystems, 2019, 20, 5556–5564. https://doi.org/10.1029/2019GC008515. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo