1. bookVolume 8 (2021): Issue 2 (July 2021)
Journal Details
License
Format
Journal
eISSN
2603-347X
First Published
15 Dec 2015
Publication timeframe
1 time per year
Languages
English
access type Open Access

Hepatotoxicity and mitochondrial dysfunction after lead (Pb) exposure and the protective effect of fennel essential oil of this toxicity in Wister rats

Published Online: 05 Aug 2021
Volume & Issue: Volume 8 (2021) - Issue 2 (July 2021)
Page range: 16 - 27
Journal Details
License
Format
Journal
eISSN
2603-347X
First Published
15 Dec 2015
Publication timeframe
1 time per year
Languages
English
Abstract

The present work focuses on evaluation of the toxic effects of an exposure to lead (Pb) on the liver mitochondria function in Wistar rats and the protective role of the fennel essential oils (FEO).

The experiments were conducted on Wistar rats, which were treated daily through orally gavages during 21 days. 24 animals were divided into four groups of 6 rats each one: the control group received water, while group II received FEO (0.5 mg/kg); group III received Pb (25 mg/kg), and group IV received Pb + FEO in the doses of (0,5 + 25 mg/kg). The mitochondrial dysfunction induced by lead is expressed by reducing mitochondrial respiration (O2 consumption) associated with an increase in mitochondrial swelling and permeability compared to the control group. A disturbance in the rates of oxidative stress biomarkers was also observed. This disturbance was expressed by an increase of the MDA rate and the Cytochromes C activity associated with depletion in the GSH rate and GPx activity compared to the control group. The rat’s co-treatment with FEO restored all these parameters to values similar to the Control.

The whole of these results shows well that the exposure to the lead causes disturbances on the level mitochondrion, which are attenuated by fennel essential oils.

Keywords

[1]. Janer A., Prudent J., Paupe V., Fahiminiya S., Majewski J., Garioto N., Rosiers C. D., Forest A., Lin Z.Y., Gingras A.C. Mitchell G., McBride H. M, & Shoubridge E. A., SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome, EMBO Molecular Medicine, 2016, 8(9), 1019-1038.10.15252/emmm.201506159 Search in Google Scholar

[2]. Fromenty, B. Toxicité mitochondriale et métabolique desmédicaments: mécanismes et conséquences au niveau du foie, Réanimation, 2010, 19, 552-567.10.1016/j.reaurg.2010.05.003 Search in Google Scholar

[3]. Elhamalawy O.H. Protective effect of pumpkin seed oil against lead acetate toxicity in male mice, Az. J. Pharm Sci., 2018. 58, 115.10.21608/ajps.2018.46647 Search in Google Scholar

[4]. Owoeye O., Onwuka S.K. Lead Toxicity: Effect of Launaea taraxacifolia on the Histological and Oxidative alterations in Rat Regio III Cornu ammonis and Cerebellum. Anatomy Journal of Africa, 2016, 5(1), 783-794. Search in Google Scholar

[5]. Zaglool N.F., Hassan S.M.H., El-shamy S.A. Effect of Aqueous Extract of Punica granatum Peel on the Oxidative Damage Induced by Lead Intoxication in Rats, Zagazig Veterinary Journal, 2017, 45(2), 112-124.10.21608/zvjz.2017.7884 Search in Google Scholar

[6]. Owolabi J., Williams F., Fabiyi O. Evaluation of Moringa’s Effects Against Lead-Induced Disruption of the Hippocampus in Animal Models, World J Life Sci. and Medical Research, 2014, 3(2), 39. Search in Google Scholar

[7]. Taha N., Korshom M., Mandour A.W., Lebdah M., Aladham E. Effect of lead toxicity on mineral metabolism and immunological factors in Rats, Alexandria Journal of Veterinary Sciences, 2013, 39, 64-73. Search in Google Scholar

[8]. El-Masry S., Ali H. A.S., El-Sheikh N.M., Awad M.S. Dose-Dependent Effect of Coriander (Coriandrum sativum L.) and Fennel (Foeniculum vulgare M.) on Lead Nephrotoxicity in Rats, International Journal of Research Studies in Biosciences, 2016, 4(6), 36-45.10.20431/2349-0365.0406006 Search in Google Scholar

[9]. Ozbek, H., Ugras, S., Dulger, H., Bayram, I., Tuncer, I., Ozturk, G., Ozturk, A. Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia, 2003, 74, 317-319.10.1016/S0367-326X(03)00028-5 Search in Google Scholar

[10]. Sefidan A.Y., Valizadeh M., Aharizad S., Sabzi M. Path analysis of grain yield, some morphological traits and essential oil content in different fennel (Foeniculum vulgare Mill.) populations, Journal of Biodiversity and Environmental Sciences, 2014, 4(5), 10-15. Search in Google Scholar

[11]. Him A., Ozbek H., Turel I., Oner A.C. Antinociceptive activity of alpha-pinene and fenchone, Pharmacology online, 2008, 3, 363-369. Search in Google Scholar

[12]. Rani S., Das S. Foeniculum vulgare: phytochemical and pharmacological review. International Journal of Advanced Research, 2016, 4(7), 477-486.10.21474/IJAR01/1143 Search in Google Scholar

[13]. Agarwal R., Gupta S., Agrawal S.S., Srivastava S., Saxena R. Oculohypotensive effects of Foeniculum vulgare in experimental models of glaucoma, Indian J. Physiol. Pharmacol., 2008, 52(1), 77-83. Search in Google Scholar

[14]. Rustin P., Chreti T., Bourgeron B., Gerard A.G., Rotig G.M., Saudubray A., Munnich. Biochemical and molecular investigation in respiratory chain deficiencies. Clin. Chim. Acta, 1994, 228, 35-51.10.1016/0009-8981(94)90055-8 Search in Google Scholar

[15]. Rouabhi R, Gasmi S, Boussekine S, Kebieche M. Hepatic oxidative stress induced by Zn and opposite effect of Se in Oryctolaguscuniculus. J Environ Anal Toxicol, 2015, 5, 289.10.4172/2161-0525.1000289 Search in Google Scholar

[16]. Kristal BS, Park BK, Yu B.P. 4-Hydroxynonénal est un puissant inducteur de la transition de perméabilité mitochondriale. Biol Chem, 1996, 6033-6038.10.1074/jbc.271.11.60338626387 Search in Google Scholar

[17]. Flohe G. Analysis of glutathione peroxidase. Methods Enzymol, 1984, 105, 114-121.10.1016/S0076-6879(84)05015-1 Search in Google Scholar

[18]. Franco R., Cidlowski J. Apoptosis and glutathione: beyond an Antioxidant, Cell Death Differ, 2009, 16, 1303-1314.10.1038/cdd.2009.107 Search in Google Scholar

[19]. Warso M.A., Lands W.E. Lipid peroxidation in relation to prostacyclin and thromboxane physiology and pathophysiology. British Medical Bulletin, 1983, 39(3), 277-280.10.1093/oxfordjournals.bmb.a071833 Search in Google Scholar

[20]. Ghoniem M.H., El-Sharkawy1 N.I., Hussein M.M.A., Moustafa G.G. Efficacy of Curcumin on Lead Induced Nephrotoxicity in Female Albino Rats. Journal of American Science, 2012, 8(6), 502. Search in Google Scholar

[21]. Kansal L., Sharma A., Lodi S. Remedial effect of Coriandrum sativum (coriander) extracts on lead induced oxidative damage in soft tissues of swiss albino mice, International Journal of Pharmacy and Pharmaceutical Sciences, 2012, 4(3), 975-1491. Search in Google Scholar

[22]. SHAH F.C., Jain N. Ameliorative action of synthetic and herbal antioxidants on lead induced hepatotoxicity: an in vitro study, J Pharm Clin Res, 2016, 9(2), 364-370. Search in Google Scholar

[23]. Adli D.E.H., Kahloula K., Slimani M., Brahmi M., Benreguieg M. Prophylactic Effects of Syzygium aromaticum Essential Oil on Developing Wistar Rats Co-exposed to Lead and Manganese. Phytothérapie, 2017. 1-7. Search in Google Scholar

[24]. Koppula S., Kumar H. Foeniculum vulgare Mill. (Umbelliferae) Attenuates Stress and Improves Memory in Wister Rats. Tropical Journal of Pharmaceutical Research, 2013, 12(4), 553-558.10.4314/tjpr.v12i4.17 Search in Google Scholar

[25]. Mesbah L., Belli N., Chebab S., Tekou M.K., Leghou Chi E. Stress oxydant induit par la coexposition au plomb et au cadmium: deux contaminants des eaux souterraines de oued nil (JIJEL - Algérie), Revue des Sciences de l’Eau, 2010, 23(3), 289-301.10.7202/044690ar Search in Google Scholar

[26]. Zhang Y., Liu X. Z., L.U. H., Li Mei, And Liu P. Z., Lipid Peroxidation and Ultrastructural Modifications in Brain after Perinatal Exposure to Lead and/or Cadmium in Rat Pups1, Biomedical Anenvironmental Sciences, 2009, 22, 423-429.10.1016/S0895-3988(10)60021-9 Search in Google Scholar

[27]. Attia A.M.M., Ibrahim F.A.A., Nabil G.M., Aziz S.W. Antioxidant effects of ginger (Zingiber officinale Roscoe) against lead acetate-induced hepatotoxicity in rats, African Journal of Pharmacy and Pharmacology, 2013, 7(20), 1213-1219.10.5897/AJPP2013.3465 Search in Google Scholar

[28]. Andjelkovic M., Djordjevic A.B., Antonijevic E., Antonijevic B., Stanic M., Stevuljevic J.K., Kalimanovska V.S., Jovanovic M., Boricic N., Wallace D., Bulat Z. Toxic Effect of Acute Cadmium and Lead Exposure in Rat Blood, Liver, and Kidney, Int. J. Environ. Res. Public Health, 2019, 16(2), 274.10.3390/ijerph16020274635192830669347 Search in Google Scholar

[29]. Koppula S., Kumar H. Foeniculum vulgare Mill (Umbelliferae) Attenuates Stress and Improves Memory in Wister Rats. Tropical Journal of Pharmaceutical Research, 2013, 12 (4), 553-558.10.4314/tjpr.v12i4.17 Search in Google Scholar

[30]. El-Sheikh E.A., Galal A.A.A. Toxic effects of sub-chronic exposure of malealbino rats to emamectin benzoate and possibleameliorative role of Foeniculum vulgare essential oil, Environmental Toxicology and Pharmacology, 2015, 39(3), 1177-1188.10.1016/j.etap.2015.04.00825935540 Search in Google Scholar

[31]. Choi E.M., Hwang J.K. Anti-inflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare, Fitoterapia, 2004, 75, 557-565.10.1016/j.fitote.2004.05.00515351109 Search in Google Scholar

[32]. El-Garawani I., El Nabi S. H., El-Ghandour E. The protective effect of (Foeniculum vulgare) oil on etoposide-induced genotoxicity on male albino rats, Ejpmr, 2017, 4(7), 180-194. Search in Google Scholar

[33]. Bhavan P.S., Anisha T.C., Srinivasan V., Muralisankar T., Manickam N. Effects of spices, Papaver somniferum, Elettaria cardamomum, Foeniculum vulgare and Syzygium aromaticum on growth promotion in Macrobrachium malcolmsonii early juveniles, Int. J. Pure App. Biosci., 2014, 2(6), 120-131. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo