1. bookVolume 56 (2021): Issue 3 (September 2021)
Journal Details
First Published
03 May 2007
Publication timeframe
4 times per year
Open Access

First Results of Time Series Analysis of the Permanent GNSS Observations at Polish EPN Stations Using GipsyX Software

Published Online: 08 Oct 2021
Volume & Issue: Volume 56 (2021) - Issue 3 (September 2021)
Page range: 101 - 118
Received: 03 Feb 2021
Accepted: 24 Sep 2021
Journal Details
First Published
03 May 2007
Publication timeframe
4 times per year

Altamimi Z., Rebischung P., Métivier L., Collilieux X. (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, Journal of Geophysical Research: Solid Earth, Vol. 121, No. 8, 6109–6131. Search in Google Scholar

Altamimi Z., Sillard P., Boucher C. (2007) CATREF software: Combination and analysis of terrestrial reference frames, LAREG Technical, Institut Géographique National, Paris, France, p. 47. Search in Google Scholar

Blewitt G. (2011) Advances in Global Positioning System technology for geodynamics investigations, Wiley Search in Google Scholar

Bock Y., Fang Peng., Genrich J., Hager B., Herring T., Hudnut K. (1993) Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements, Nature, Vol. 361, No. 6410, 337–340 Search in Google Scholar

Bosy J., Graszka W., Oruba A. (2010) ASG-EUPOS i podstawowa osnowa geodezyjna w Polsce, Biuletyn Wojskowej Akademii Technicznej, Vol. 59, 7–15. Search in Google Scholar

Bosy J., Krynski J. (2015) Reference frames and reference networks, Geodesy and Cartography, Vol. 64, No. 2, 5–29 Search in Google Scholar

Chen J., Yang M. (2011) Absolute site velocity estimation using the GPS precise point positioning technique, in 32nd Asian Conference on Remote Sensing, ACRS 2011, 1443–1448. Search in Google Scholar

Dong Da-Nan. (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California, Journal of Geophysical Research, Vol. 94, No. B4, 3949-3966 Search in Google Scholar

Feng J., Chen H. (2019) Time series analysis of Xiamen GPS continuous operating station, Journal of Geomatics, Vol 44, No. 5 Search in Google Scholar

Fulcher B., Little M., Jones N. (2013) Highly comparative time-series analysis: The empirical structure of time series and their methods, Journal of the Royal Society Interface, Vol.10, No. 83. Search in Google Scholar

Goudarzi M., Banville S. (2018) Application of PPP with ambiguity resolution in earth surface deformation studies: a case study in eastern Canada, Survey Review, Vol. 50, No.363, 531-54410.1080/00396265.2017.1337951 Search in Google Scholar

Gubler E. (1984) The determination of recent crustal movements from precise leveling data, a review, in Workshop on precise leveling, Eds. H. Pelzer and W. Niemeier. Search in Google Scholar

Gubler E., Kahle H. G. (1985) Recent crustal movements in the Alpine-Mediterrane a region analyzed in the Swiss ALPS, Tectonophysics, Vol 130, 1-410.1016/0040-1951(86)90119-8 Search in Google Scholar

Guo Fei, Li Xingxing, Zhang Xiaohong, Wang Jinling (2017) The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning, Advances in Space Research, Vol. 59, No. 11, 2714–2725. Search in Google Scholar

Herff C., Krusienski D. (2018) Extracting features from time series, in Fundamentals of Clinical Data Science. Springer International Publishing, 85–100. Search in Google Scholar

Herring T. (2003) MATLAB Tools for viewing GPS velocities and time series, GPS Solution, No. 710.1007/s10291-003-0068-0 Search in Google Scholar

Hofmann-Wellenhof B., Lichtenegger H., Collins J. (2012) Global positionig System: Theory and Practise. Springer Science & Business Media Search in Google Scholar

Kontny B. (2012) Models of vertical movements of the earth crust surface in the area of Poland derived from leveling and GNSS data, Acta Geodynamica Et Geomaterialia. Vol. 9, No. 3, 331-337 Search in Google Scholar

Khoptar A., Savchuk S. (2020) Estimation of Ionospheric Delay Influence on the Efficiency of Precise Positioning of Multi-GNSS Observations, Baltic Surveying, Vol. 12, 14-18 Search in Google Scholar

Kowalczyk K. (2017) Application of PPP Solution to Determine the Absolute Vertical Crustal Movements, in Proceedings of the 10th International Conference, Vilnius Gediminas Technical University.10.3846/enviro.2017.207 Search in Google Scholar

Kowalczyk K. (2015) Creation of a model of relative vertical crustal movements in the polish territory on the basis of the data from active geodetic network EUPOS (ASG EUPOS), Acta Geodynamica et Geomaterialia, Vol. 12, No. 3, 215–225. Search in Google Scholar

Kowalczyk K. (2005) Determination of land uplift in the area of Poland, 6th International Conference Environment, al Engineering, (May 2005), 903–907. Search in Google Scholar

Kowalczyk K. (2006) Wyznaczenie modelu ruchów pionowych skorupy ziemskiej na obszarze Polski, Praca doktorska, Uniwersytet Warmińsko-Mazurski w Olsztynie Search in Google Scholar

Krakiwsky E., Vanicek P. (1986) Geodesy: The concept. Edited by N. Y. Elsevier. Search in Google Scholar

Heflin B., Hurst K., Muellerschoen R., Wu S., Yunck T, Zumbcrge J. (1996) Gipsy-Oasis II: A High Precision GPS Data Processing System and General Satellite Orbit, NASA Technology Transfer Conference, p. 10. Search in Google Scholar

Lindberg M. (2014) Report from EUREF WG on Deformation models, in Symposium of the IAG Subcommission for Europe (EUREF) held in Vilnius. Search in Google Scholar

Murra J., et al. (2020) Regional global navigation satellite system networks for crustal deformation monitoring, Seismological Research Letters, Vol. 91, No. 2 A, 552–572. Search in Google Scholar

Niewiarowski J., Wwyrzykowski T. (1961) Wyznaczenie współczesnych ruchów pionowych skorupy ziemskiej na obszarze Polski przez porównanie wyników powtarzanych niwelacji precyzyjnych, Prace Instytutu Geodezji i Kartografii, Vol. 7, No. 1. Search in Google Scholar

Pelzer H., Niemeier W. (1984) Precise Levelling, in Contributions to the Workshop on Precise Levelling Held at the University of Hannover, March 16-18, 1983. Ferd. Dümmlers Verlag. Search in Google Scholar

Robinson G. (2009) Time Series Analysis. International Encyclopedia of Human Geography, 285-29310.1016/B978-008044910-4.00546-0 Search in Google Scholar

Ryczywolski M., Oruba A,. Leończyk M. (2008) The precise satellite positioning system ASG-EUPOS, GEOS 2008, January 2007, 1-6 Search in Google Scholar

Ryczywolski M., Oruba A., Wajda S. (2010) Coordinate stability monitoring module working within ASG-EUPOS reference station network, EUREF 2010 International Symposium. Search in Google Scholar

Saaranen V. and Mäkinen J. (2002) Determining postglacial rebound from the three precise levellings in Finland : status in 2002, Proceedings of the 14th General Meeting of the Nordic Geodetic Commission, Espoo, Finland, October 1–5, Search in Google Scholar

Sandford H. (1978) Models for Extracting Vertical Crustal Movements Leveling Data, Proc. of the 9th OEOP Conference, An International Symposium on the Applications of Geodesy lo GeoJynamics, Dept. of Geodetic Science Kept. Vol. 2, No. 280, 183–191. Search in Google Scholar

Segall P., Davis J. (1997) GPS applications for geodynamics and earthquake studies, Annual Review of Earth and Planetary Sciences, Vol. 25, 301-336 Search in Google Scholar

Szołucha M., Kroszczyński K., Kiliszek D. (2018) Accuracy of Precise Point Positioning (PPP) with the use of different International GNSS Service (IGS) products and stochastic modelling, Geodesy and Cartography, 67(2), 207–238. Search in Google Scholar

Teatini P., Gambolati G., Ferronato M., Settari A., Walters D. (2011) Land uplift due to subsurface fluid injection, Journal of Geodynamics, Vol. 51, No. 1, 1-16 Search in Google Scholar

Tian Y. (2011) iGPS: IDL tool package for GPS position time series analysis., GPS Solution, Vol. 15, No. 3, 299-303 Search in Google Scholar

Torge W. (2001) Geodesy. 3rd edditi. Berlin, New York: de Gruyter.10.1515/9783110879957 Search in Google Scholar

Williams S. (2008) CATS: GPS coordinate time series analysis software, GPS Solution, Vol. 12, No. 2, 147-153 Search in Google Scholar

Wyrzykowski T. (1985) Mapa współczesnych prędkości pionowych ruchów powierzchni skorupy ziemskiej na obszarze Polski, Instytut Geodezji i kartografii, Warszawa 1895 Search in Google Scholar

Wyrzykowski T. (1987) A new determination of recent vertical movements of the earth’s crust in Poland, Journal of Geodynamics, Vol. 7, No. 2-4, 171-178 Search in Google Scholar

Villiger A., Dach R. (2017) IGS International GNSS Service Technical report 2017, Astronomical Institute University of Bern Search in Google Scholar

Xu G. (2007) Theory, Algorithms and Applications, Springer Science Business Media. Search in Google Scholar

Ye S., R. (2002) Theory and its realization of GPS precise point positioning using un-differenced phase observations Wuhan University, Wuhan, Search in Google Scholar

Yi W., Song W., Lou Y. et al. et al. (2017) Improved method to estimate undifferenced satellite fractional cycle biases using network observations to support PPP ambiguity resolution, GPS Solution, Vol. 21, No. 3, 1369–1378. Search in Google Scholar

Zhang Y., Wu J., Xue Y., Wang Z., Yao Y., Yan X. (2015) Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China, Hydrogeology Journal, Vol. 23, No. 8, 1851–1866 Search in Google Scholar

Zogg J., M. (2002) GPS basics, U-Blox, Thalwil, Vol. No, Januar), 1–60. Search in Google Scholar

Zumberge J., Heflin M., Jefferson D., Watkins M., Webb F. (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, Vol. 102, No. B3, 5005–5017 Search in Google Scholar

Recommended articles from Trend MD