Miranda-Apodaca, J., Mena-Petite, A., Lacuesta, M., Muñoz-Rueda, A., & Pérez-López, U. (2020). A physiological approach to study the competition ability of the grassland species Trifolium pratense and Agrostis capillaris. Journal of Plant Physiology, 254, 153284. https://doi.org/10.1016/j.jplph.2020.153284Search in Google Scholar
Warembourg, F. R., & Estelrich, H. D. (2001). Plant phenology and soil fertility effects on below-ground carbon allocation for an annual (Bromus madritensis) and a perennial (Bromus erectus) grass species. Soil Biology and Biochemistry, 33(10), 1291–1303. https://doi.org/10.1016/S0038-0717(01)00033-5Search in Google Scholar
Kreitzman, M. (2020). Perennial Agriculture: Agromony And Environment In Long-Lived Food Systems. https://doi.org/10.14288/1.0392926Search in Google Scholar
Duran, B. E. L., Duncan, D. S., Oates, L. G., Kucharik, C. J., & Jackson, R. D. (2016). Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems. PLOS ONE, 11(3), e0151919. https://doi.org/10.1371/journal.pone.0151919Search in Google Scholar
Benizri, E., & Amiaud, B. (2005). Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biology and Biochemistry, 37(11), 2055–2064. https://doi.org/10.1016/j.soilbio.2005.03.008Search in Google Scholar
Friedrich, U., von Oheimb, G., Kriebitzsch, W.-U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought—Experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and Soil, 353(1), 59–71. https://doi.org/10.1007/s11104-011-1008-3Search in Google Scholar
Bechmann, M. (2014). Long-term monitoring of nitrogen in surface and subsurface runoff from small agricultural dominated catchments in Norway. Agriculture, Ecosystems & Environment, 198, 13–24. https://doi.org/10.1016/j.agee.2014.05.010Search in Google Scholar
Li, Y., Nie, C., Liu, Y., Du, W., & He, P. (2019). Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland. Science of The Total Environment, 654, 264–274. https://doi.org/10.1016/j.scitotenv.2018.11.031Search in Google Scholar
Hausmann, N. T., & Hawkes, C. V. (2009). Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytologist, 183(4), 1188–1200. https://doi.org/10.1111/j.1469-8137.2009.02882.xSearch in Google Scholar
Jach-Smith, L. C., & Jackson, R. D. (2018). N addition undermines N supplied by arbuscular mycorrhizal fungi to native perennial grasses. Soil Biology and 148–157. https://doi.org/10.1016/j.soilbio.2017.10.009Search in Google Scholar
Tshewang, S., Rengel, Z., Siddique, K. H. M., & Solaiman, Z. M. (2020). Growth, Rhizosphere Carboxylate Exudation, and Arbuscular Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses Varied with Phosphorus Application. Agronomy, 10(12), 2017. https://doi.org/10.3390/agronomy10122017Search in Google Scholar
Muneer, M. A., Tarin, M. W. K., Chen, X., Afridi, M. S., Iqbal, A., Munir, M. Z., Zheng, C., Zhang, J., & Ji, B. (2022). Differential response of mycorrhizal fungi linked with two dominant plant species of temperate grassland under varying levels of N-addition. Applied Soil Ecology, Biochemistry, 116, 104272. https://doi.org/10.1016/j.apsoil.2021.104272Search in Google Scholar
Bardgett, R. D., Streeter, T. C., & Bol, R. (2003). SOIL MICROBES COMPETE EFFECTIVELY WITH PLANTS FOR ORGANIC-NITROGEN INPUTS TO TEMPERATE GRASSLANDS. Ecology, 84(5), 1277–1287. https://doi.org/10.1890/0012-9658(2003)084[1277:SMCEWP]2.0.CO;2Search in Google Scholar
Samuil, C., Vintu, V., Sirbu, C., Saghin, G., Muntianu, I., & Ciobanu, C. (2011). Low input management of Agrostis capillaris+ Festuca rubra grasslands in Romania. Grassland Science in Europe, 16, 335-337.Search in Google Scholar
Venterink, H. O., & Güsewell, S. (2010). Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Functional Ecology, 24(4), 877–886. https://doi.org/10.1111/j.1365-2435.2010.01692.xSearch in Google Scholar
Avarvarei, B. V., & Chelariu, E. L. (2010). Influence Of Fertilization Upon Forage Quality On A Permanent Grassland Of Agrostis capillaris L.–Festuca rubra L. Lucrări Științifice USAMV Iaşi, Seria Zootehnie, 54, 49-33.Search in Google Scholar
Pãcurar, F. S., Rotar, I., Bogdan, A. D., Vidican, R. M., & Dale, L. M. (2012). The influence of mineral and organic long-term fertilization upon the floristic composition of Festuca rubra L.-Agrostis capillaris L. grassland in Apuseni mountains, Romania. 14.Search in Google Scholar
Corcoz, L., Păcurar, F., Pop-Moldovan, V., Vaida, I., Stoian, V., & Vidican, R. (2021). Mycorrhizal Patterns in the Roots of Dominant Festuca rubra in a High-Natural-Value Grassland. Plants, 11(1), 112.Search in Google Scholar