Open Access

Can the elimination of cyanobacteria by micro-sieving be an innovative lake purity improvement method?


Cite

Amaral, P.A.P., Coral, L.A., Nagel-Hassemer, M.E., Belli, T.J., Lapolli, F.R. (2013). Association of dissolved air flotation (DAF) with microfiltration for cyanobacterial removal in water supply. Desalination and Water Treatment, 51, 1664-1671.10.1080/19443994.2012.715128 Search in Google Scholar

Ayguna, A., Yilmaz, T. (2010). Improvement of coagulation-flocculation process for treatment of detergent wastewaters using coagulant aids. International Journal of Chemical and Environmental Engineering, 1(2), 97-101. Search in Google Scholar

Barnard, M.A., Chaffin, J.D., Plaas, H.E., Boyer, G.L., Wei, B., Wilhelm, S.W., Rossignol, K.L., Braddy, J.S., Bullerjahn, G.S., Bridgeman, T.B., Davis, T.W., Wei, J., Bu, M., Paerl, H.W. (2021). Roles of nutrient limitation on western Lake Erie CyanoHAB Toxin Production. Toxins, 13(1), 47.10.3390/toxins13010047782810433435505 Search in Google Scholar

Benoufella, F., Laplanche, A., Boisdon, V., Bourbigot, M.M. (1994). Elimination of Microcystis cyanobacteria (blue-green algae) by an ozoflotation process: a pilot plant study. Water Science & Technology, 30(8), 245-257.10.2166/wst.1994.0418 Search in Google Scholar

Burford, M.A., Gobler, C.J., Hamilton, D.P., Visser, P.M., Lurling, M., Codd, G.A. (2019). Solutions for managing cyanobacterial blooms: A scientific summary for policy makers. IOC/UNESCO, Paris (IOC/INF-1382). Search in Google Scholar

Camacho, F.P., Bongiovani, M.C., Arakawa, F.S., Shimabuku, Q.L., Vieira, A.M.S., Bergamasco, R. (2013). Advanced processes of cyanobacteria and cyanotoxins removal in supply water treatment. Chemical Engineering Transactions, 32, 421-426. Search in Google Scholar

Chittora, D., Meena, M., Barupal, T., Swapnil, P., Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports. 22:100737.10.1016/j.bbrep.2020.100737 Search in Google Scholar

Chów, C.W.K., Panglisch, S., House, J., Drikas, M., Burch, M.D., Gimbel, R. (1997). A study of membrane filtration for the removal of cyanobacterial cells. AQUA, 46(6), 324-334. Search in Google Scholar

Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., Likens, G.E. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323(5917), 1014–1015.10.1126/science.1167755 Search in Google Scholar

Czyżewska, W, Piontek M. (2019). The efficiency of microstrainers filtration in the process of removing phytoplankton with special consideration of cyanobacteria. Toxins, 11(5), 285.10.3390/toxins11050285656327431117283 Search in Google Scholar

EPA 625/1-75-003a. (1975). Process design manual for suspended solids removal. U.S. Environmental Protection Agency, Technology Transfer. Search in Google Scholar

European Commission (2000). Directive of the European Parliament and of the Council 2000/60/EC establishing a framework for community action in the field of water policy. Official Journal 2000 L 327/1, European Commission, Brussels. Search in Google Scholar

Fernandes, P., Pedersen, L-F., Pedersen, P.B. (2015). Microscreen effects on water quality in replicated recirculating aquaculture systems. Aquacultural Engineering, 65, 17–26.10.1016/j.aquaeng.2014.10.007 Search in Google Scholar

Gałczyński, Ł., Ociepa, A. (2008). Toxins produced by Cyanoprokaryota. Ecological Chemistry and Engineering, S. 15(1), 69-76. Search in Google Scholar

Garcia Chanc, L.M., Van Brunt, S.C., Majsztrik, J.C., White, S.A. (2019). Short and long-term dynamics of nutrient removal in floating treatment wetlands. Water research, 159, 153-163.10.1016/j.watres.2019.05.01231091480 Search in Google Scholar

Grochowiecka, W., Świderska-Bróż, M., Wolska, M. (2009). Efficiency of the Micro-Sieve Process Towards the Removal of Phytoplankton Organisms and Some Chemical Pollutants from Surface Water. Ochrona Srodowiska, 31(2), 25. Search in Google Scholar

Huang, W., Chu, H., Dong, B., Hu, M., Yu, Y. (2015). A membrane combined process to cope with algae blooms in water. Desalination, 355, 99-109.10.1016/j.desal.2014.09.037 Search in Google Scholar

Islami, H.R., Filizadeh, Y., Soltani, M., Hossein, F.M. (2010). The use of barley straw for controlling of cyanobacteria under field application. Journal of Fisheries and Aquatic Science, 5(5), 394-401.10.3923/jfas.2010.394.401 Search in Google Scholar

Istvánovics, V., Pettersson, K., Rodrigo, M.A., Pierson, D., Padisák, J., Colom, W. (1993). Gloeotrichia echinulata, a colonial cyanobacterium with a unique phosphorus uptake and life strategy. Journal of Plankton Research, 15(5), 531–552.10.1093/plankt/15.5.531 Search in Google Scholar

Jilek, B. (1994). Phytoplankton and zooplankton removing on the micro-sieves. Conference: Water supply of cities and villages. Poznań, pp. 779-788 (in Polish). Search in Google Scholar

Jones, T. G., Willis, N., Gough, R., Freeman, C. (2017). An experimental use of floating treatment wetlands (FTWs) to reduce phytoplankton growth in freshwaters. Ecological Engineering, 99, 316-323,10.1016/j.ecoleng.2016.11.002 Search in Google Scholar

Kobos, J., Błaszczyk, A., Hohlfeld, N., Toruńska-Sitarz, A., Krakowiak, A., Hebel, A., Stryk, K., Grabowska, M., Toporowska, M., Kokociński, M., Messyasz, B., Rybak, A., Napiórkowska-Krzebietke, A., Nawrocka, L., Pełechata, A., Budzyńska, A., Zagajewski, P., Mazur-Marzec H. (2013). Cyanobacteria and cyanotoxins in Polish freshwater bodies. Oceanological and Hydrobiological Studies, 42(4), 358–378.10.2478/s13545-013-0093-8 Search in Google Scholar

Langer, M., Schermann, A. (2013). Feasibility of the microsieve technology for advanced phosphorus removal. Final Report OXERAM, Kompentenzzentrum Wasser Berlin gGmbH, pp. 83. Search in Google Scholar

Ljunggren, M. (2006). Micro screening in wastewater treatment-an overview. Vatten, 62, 171–177. Search in Google Scholar

López-Muńoz, A. S., Arsuaga, J. M., Van der Bruggen, B. (2009). Influence of membrane solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes. Separation and Purification Technology, 66(1), 194–201.10.1016/j.seppur.2008.11.001 Search in Google Scholar

Mackay, E.B., Maberly, S.C., Pan, G., Reitzel, K., Bruere, A., Corker, N., Douglas, G., Egemose, S., Hamilton, D., Hatton-Ellis, T., Huser, B., Li, W., Meis, S., Moss, B., Lürling, M., Phillips, G., Yasseri, S., Spears, B.M. (2014). Geoengineering in lakes: welcome attraction or fatal distraction? Inland Waters, 4, 349-356.10.5268/IW-4.4.769 Search in Google Scholar

Mantzouki, E., Lürling, M., Fastner, J., de Senerpont Domis, L., Wilk-Woźniak, E. et al. (2018). Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins, 10(4), 156.10.3390/toxins10040156592332229652856 Search in Google Scholar

Napiórkowska-Krzebietke, A. (2015). Cyanobacterial bloom intensity in the ecologically relevant state of lakes-an approach to Water Framework Directive implementation. Oceanological and Hydrobiological Studies, 44(1), 97-108.10.1515/ohs-2015-0010 Search in Google Scholar

Napiórkowska-Krzebietke, A., Dunalska, J., Grochowska, J., Łopata, M., Brzozowska, R. (2015). Intensity and thresholds of cyanobacterial blooms – an approach to determine the necessity to restore urban lakes. Carpathian Journal of Earth and Environmental Sciences, 10(2), 123-132. Search in Google Scholar

Napiórkowska-Krzebietke, A., Hutorowicz, A. (2015). The physicochemical background for the development of potentially harmful cyanobacterium Gloeotrichia echinulata J. S. Smith ex Richt. Journal of Elementology, 20(2), 363–376.10.5601/jelem.2014.19.4.756 Search in Google Scholar

Newcombe, G., House, J., Ho, L., Baker, P., Burch, M. (2010). Management strategies for cyanobacteria (blue-green algae): A guide for water utilities. Research Report 74. Water Quality Research Australia, pp. 100. Search in Google Scholar

Pathak, J., Rajneesh, Maurya P. K., Singh, S. P., Häder D.-P., Sinha, R. P. (2018). Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Frontiers in Environmental Science 6: 7.10.3389/fenvs.2018.00007 Search in Google Scholar

Pettersson, K., Herlitz, E., Istvánovics, V. (1993). The role of Gloeotrichia echinulata in the transfer of phosphorus from sediments to water in Lake Erken. Hydrobiologia, 253, 123–129.10.1007/BF00050732 Search in Google Scholar

Pfeiffer, T. J., Osborn, A., Davis, M. (2008). Particle sieve analysis for determining solids removal efficiency of water treatment components in a recirculating aquaculture system. Aquacultural Engineering, 39(1), 24–29.10.1016/j.aquaeng.2008.05.003 Search in Google Scholar

Piontek, M., Czyżewska, W. (2012). Efficiency of drinking water treatment processes. Removal of phytoplankton with special consideration for cyanobacteria and improving physical and chemical parameters. Polish Journal of Environmental Studies, 21(6), 1797–1805. Search in Google Scholar

Scalize, P. S., Souza, L. M. D., Albuquerque, A. (2019). Reuse of alum sludge for reducing flocculant addition in water treatment plants. Environment Protection Engineering, 45(1), 57-70.10.37190/epe190105 Search in Google Scholar

Tymowski, R., Duthie, H. C. (2000). Life strategy and phosphorus relations of the cyanobacterium Gloeotrichia echinulata in an oligotrophic Precambrian Shield lake. Archiv für Hydrobiologie, 148(3), 321–332.10.1127/archiv-hydrobiol/148/2000/321 Search in Google Scholar

Westrick, J. A., Szlag, D. C., Southwell, B. J., Sinclair, J. (2010). A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Analytical and Bioanalytical Chemistry, 397(5), 1705–1714.10.1007/s00216-010-3709-520502884 Search in Google Scholar

World Health Organization (2011). Guidelines for drinking-water quality, 4th ed [electronic resource]: Switzerland, India, Malta. Search in Google Scholar

eISSN:
2545-059X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Zoology, other