Open Access

Animal models for the treatment of human diseases

   | May 10, 2024

Cite

Chen C.S., Squire J.A., Wells P.G. (2009). Reduced tumorigenesis in p53 knockout mice exposed in utero to low vitamin E. Cancer, 115(-Dose 7): 1563–1575. Search in Google Scholar

Crawford D.K., Mullenders J., Pott J., Boj S.F., Landskroner-Eiger S., Goddeeris M.M. (2021). Targeting G542X CFTR nonsense alleles with ELX-02 restores CFTR function in human-derived intestinal organoids. J. Cystic Fibros., 20: 436–442. Search in Google Scholar

Curtasu M.V., Knudsen K.E.B., Callesen H., Purup S., Stagsted J., Hedemann M.S. (2019). Obesity development in a miniature Yucatan pig model: a multi-compartmental metabolomics study on cloned and normal pigs fed restricted or ad libitum high-energy diets. J. Proteome Res., 18: 30–47. Search in Google Scholar

Dai Y., Vaught T.D., Boone J., Chen S.-H., Phelps C.J., Ball S., Monahan J.A., Jobst P.M., McCreath K.J., Lamborn A.E., Cowell-Lucero J.L., Wells K.D., Colman A., Polejaeva I.A., Ayares D.L. (2002). Targeted disruption of the α1,3- galactosyltransferase gene in cloned pigs. Nat. Biotechnol., 20: 251–255. Search in Google Scholar

Dawson H.D., Chen C., Gaynor B., Shao J., Urban J.F. Jr (2017). The porcine translational research database: a manually curated, genomics and proteomics-based research resource. BMC Genom., 18: 643. Search in Google Scholar

Dorin J.R., Dickinson P., Alton E.W., Smith S.N., Geddes D.M., Stevenson B.J., Kimber W.L., Fleming S., Clarke A.R, Hooper M.L. et al. (1992). Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature, 359: 211–215. Search in Google Scholar

Gaina G., Popa (Gruianu) A. (2021). Muscular dystrophy: experimental animal models and therapeutic approaches (review). Exp. Ther. Med., 21: 610. Search in Google Scholar

Jura J., Słomski R., Smorąg Z., Gajda B., Wieczorek J., Lipiński D., Kalak R., Juzwa W., Zeyland J. (2006). Production of pigs used in xenotransplantation (in Polish). Biotechnologia, 1: 151–158. Search in Google Scholar

Khorramizadeh M.R., Saadat F. (2020). Animal models for human disease. Anim. Biotechnol., 2020: 153–171. Search in Google Scholar

Kinter J., Sinnreich M. (2014). Molecular targets to treat muscular dystrophies. Swiss Med. Wkly., 144: 13916. Search in Google Scholar

Kochanowska I., Hampel-Osipowicz E., Waloszczyk P. (2008). Menkes disease – genetic defect in copper metabolism (in Polish). Neurologia Dziecięca, 17: 63–67. Search in Google Scholar

Konnova E.A., Swanberg M., Stoker T.B., Greenland J.C. (2018). Editors. Animal models of Parkinson’s Disease. In: Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane (AU): Codon Publications, Chapter 5. Search in Google Scholar

Knosalla C. (2018) Success for cross-species heart transplants. Nature, 564: 352–353. Search in Google Scholar

Kottaisamy C.P.D., Raj D.S., Kumar P.V., Sankaran U. (2021). Experimental animal models for diabetes and its related complications – a review. Lab. Anim. Res., 37: 23. Search in Google Scholar

Lee M.-S., Song K.-D., Yang H.-J., Chester D., Solis C.D., Kim S.-H., Lee W.-K. (2012). Development of a type II diabetic mellitus animal model using Micropig®. Lab. Anim. Res., 28: 205–208. Search in Google Scholar

Lenartowicz M., Krzeptowski W., Lipiński P., Grzmil P., Starzyński R., Pierzchała O., Møller L.B. (2015). Mottled mice and non-mammalian models of menkes disease. Front. Mol. Neurosci., 8: 72. Search in Google Scholar

Manini A., Abati E., Nuredini A., Corti S., Comi G.P. (2021). Adeno-associated virus (AAV)-mediated gene therapy for duchenne muscular dystrophy: The issue of transgene persistence. Front. Neurol., 12: 814174. Search in Google Scholar

Matsuhisa F., Kitajima S., Nishijima K., Akiyoshi T., Morimoto M., Fan J. (2020). Transgenic rabbit models: now and the future. Appl. Sci., 10: 7416. Search in Google Scholar

McCarron A., Parsons D., Donnelley M. (2021). Animal and cell culture models for cystic fibrosis which model is right for your application? Am. J. Pathol., 191: 228–242. Search in Google Scholar

Mine K., Yoshikai Y., Takahashi H., Mori H., Anzai K., Nagafuchi S. (2020). Genetic susceptibility of the host in virus-induced diabetes. Microorganisms, 8: 1133. Search in Google Scholar

Mukherjee P., Roy S., Ghosh D., Nandi S.K. (2022). Role of animal models in biomedical research: a review. Lab. Anim. Res., 38: 18. Search in Google Scholar

Pang H., Chen S., Klyne D.M., Harrich D., Ding W., Yang S., Han F.Y. (2023). Low back pain and osteoarthritis pain: a perspective of estrogen. Bone Res., 11: 42. Search in Google Scholar

Phelps C.J., Koike C., Vaught T.D., Boone J., Wells K.D., Chen S.-H., Ball S., Specht S.M., Polejaeva I.A., Monahan J.A., Jobst P.M., Sharma S.B., Lamborn A.E., Garst A.S., Moore M., Demetris A.J., Rudert W.A., Bottino R., Bertera S., Trucco M., Starzl T.E., Dai Y., Ayares D.L. (2002). Production of α1,3-Galactosyltransferase – deficient pigs. Science, 299: 411–414. Search in Google Scholar

Sariyatun R., Kajiura H., Ohashi T, Misaki R., Fujiyam K. (2021). Production of human acid-alpha glucosidase with a paucimannose structure by glycoengineered Arabidopsis cell culture. Front. Plant Sci., 12: 703020. Search in Google Scholar

Sharma J., Abbott J., Klaskala L., Zhao G., Birket S.E., Rowe S.E. (2020). A Novel G542X CFTR rat model of cystic fibrosis is sensitive to nonsense mediated decay. Front. Physiol., 11: 611249. Search in Google Scholar

Skarysz J., Bochenek M. (2006). Użycie serca transgenicznych świń w układzie heterologicznym z zastosowaniem krwi ludzkiej – doświadczenia wlasne. In: Smorąg Z., Słomski R., Cierpka L. (Editors), Biotechnologiczne i medyczne podstawy ksenotransplantacji. Poznań, Polska, Ośrodek Wydawnictw Naukowych, pp. 331–340. Search in Google Scholar

Sundberg J.P., Rice R.H. (2023). Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Vet. Pathol., 60: 6. Search in Google Scholar

Tanihara F., Hirata M., Nguyen N.T., Sawamoto O., Kikuchi T., Doi M., Otoi T. (2020) Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes. BMC Biotechnol., 20: 40. Search in Google Scholar

Wang J., Xie W., Li N, Li W., Zhang Z., Fan N., Ouyang Z., Zhao Y., Lai C., Li H., Chen M., Quan L., Li Y., Jiang Y., Jia W., Fu M., Mazid A., Zhu Y., Maxwell P.H., Pan G., Esteban M.A., Dai Z., Lai L. (2023). Generation of a humanized mesonephros in pigs from induced pluripotent stem cells via embryo complementation. Cell Stem. Cell., 30: 1235–1245. Search in Google Scholar

Wiater J., Samiec M., Wartalski K., Smorąg Z., Jura J., Słomski R., Skrzyszowska M., Romek M. (2021). Characterization of mono- and bi-transgenic pig-derived epidermal keratinocytes expressing human FUT2 and GLA genes – in vitro studies. Int. J. Mol. Sci., 22: 9683. Search in Google Scholar

Yue Y., Xu W., Kan Y., Zhao H. Y., Zhou Y., Song X., et al. (2021). Extensive germline genome engineering in pigs. Nat. Biomed. Eng., 5: 134–143. Search in Google Scholar

Zeng F., Liao S., Kuang Z., Zhu G., Wei H., Shi J., Zheng E., Xu Z., Huang S., Hong L., Gu T., Yang J., Yang H., Cai G., Moisyadi S., Urschitz J., Li Z., Wu Z. (2022). Genetically engineered pigs as efficient salivary gland bioreactors for production of therapeutically valuable human nerve growth factor. Cells, 11: 2378. Search in Google Scholar

Zeng L., Hu S., Zeng L., Chen R., Li H., Yu J., Yang H. (2023). Animal models of ischemic stroke with different forms of middle cerebral artery occlusion. Brain Sci., 13: 1007. Search in Google Scholar

Zhang B., Wang C., Zhang Y., Jiang Y., Qin Y., Pang D., Zhang G., Liu H., Xie Z., Yuan H., Ouyang H., Wang J., Tang X. (2023). A CRISPR-engineered swine model of COL2A1 deficiency recapitulates altered early skeletal developmental defects in humans. Bone, 137: 115450. Search in Google Scholar

https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kind-intentional-genomic-alteration-line-domestic-pigs-both-human-food Search in Google Scholar

https://nyulangone.org/news/pig-kidney-xenotransplantation-performing-optimally-after-32-days-human-body Search in Google Scholar

https://www.science.org/content/article/early-stage-human-kidneys-grown-pigs-first-time Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine