Cite

Ahmad I., Malak H.A., Abulreesh H.H. (2021). Environmental antimicrobial resistance and its drivers: a potential threat to public health. J. Glob. Antimicrob. Re., 27: 101–111. Search in Google Scholar

Al Amin M., Hoque M.N., Siddiki A.Z., Saha S., Kamal M.M. (2020). Antimicrobial resistance situation in animal health of Bangladesh. Vet. World., 13: 2713. Search in Google Scholar

Alonso C.A., González-Barrio D., Tenorio C., Ruiz-Fons F., Torres C. (2016). Antimicrobial resistance in faecal Escherichia coli isolates from farmed red deer and wild small mammals. Detection of a multiresistant E. coli producing extended-spectrum beta-lactamase. Comp. Immunol. Microbiol. Infect. Dis., 45: 34–39. Search in Google Scholar

Anampa D., Benites C., Lázaro C., Espinoza J., Angulo P., Díaz D., Rojas M. (2020). Detección del gen ermB asociado a la resistencia a macrólidos en cepas de Campylobacter aisladas de pollos comercializados en Lima, Perú. Rev. Panam. Salud Publ. / Pan Am., 44. Search in Google Scholar

Bacanli M., Başaran Nurş. (2019). Importance of antibiotic residues in animal food, Food. Chem. Toxicol., 125: 462–466. Search in Google Scholar

Bedada A.H., Zewde B.M., Zewde B.M. (2012). Tetracycline residue levels in slaughtered beef cattle from three slaughterhouses in central Ethiopia. Glob. Vet., 8: 546–54. Search in Google Scholar

Bengtsson-Palme J., Larsson D.J. (2016). Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ. Int., 86: 140–149. Search in Google Scholar

Bengtsson-Palme J., Kristiansson E., Larsson D.J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev., 42: fux053. Search in Google Scholar

Bennani H., Mateus A., Mays N., Eastmure E., Stärk K.D., Häsler B. (2020). Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. Antibiotics., 9: 49. Search in Google Scholar

Berendsen B.J., Roelofs G., van Zanten B., Driessen-van Lankveld W.D., Pikkemaat M.G., Bongers I.E., de Lange E. (2021). A strategy to determine the fate of active chemical compounds in soil; applied to antimicrobially active substances. Chemosphere., 279: 130495. Search in Google Scholar

Bilal M., Mehmood S., Rasheed T., Iqbal H.M. (2020). Antibiotics traces in the aquatic environment: persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health., 13: 68–74. Search in Google Scholar

Boerlin P., Reid-Smith R.J. (2008). Antimicrobial resistance: its emergence and transmission. Anim. Health Res. Rev., 9: 115–126. Search in Google Scholar

Bojarski B., Kot B., Witeska M. (2020). Antibacterials in aquatic environment and their toxicity to fish. Pharmaceuticals., 13: 189. Search in Google Scholar

Cabello F.C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol., 8: 1137–1144. Search in Google Scholar

Camargo C.M., García A., Riquelme A., Otero W., Camargo C.A., Hernandez-García T., Rabkin C.S. (2014). The Problem of Helicobacter pylori Resistance to Antibiotics: A Systematic Review in Latin America. Am. J. Gastroenterol., 109: 485–495. Search in Google Scholar

Cantas L., Shah S.Q., Cavaco L.M., Manaia C.M., Walsh F., Popowska M., Sørum H. (2013). A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front. Microbiol., 4: 96. Search in Google Scholar

Cháfer-Pericás C., Maquieira A., Puchades R. (2010). Fast screening methods to detect antibiotic residues in food samples. TrAC - Trends Anal., 29: 1038–1049. Search in Google Scholar

Chee‐Sanford J.C., Mackie R.I., Koike S., Krapac I.G., Lin Y.F., Yannarell A.C., Aminov R.I. (2009). Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual., 38: 1086–1108. Search in Google Scholar

Cheong C.K., Hajeb P., Jinap S., Ismail-Fitry M.R. (2010). Sulfonamides determination in chicken meat products from Malaysia. Int. Food Res. J., 17: 885–892. Search in Google Scholar

Chowdhury S., Hassan M.M., Alam M., Sattar S., Bari M.S., Saifuddin A.K.M., Hoque, M.A. (2015). Antibiotic residues in milk and eggs of commercial and local farms at Chittagong, Bangladesh. Vet. World., 8: 467. Search in Google Scholar

Conde-Cid M., Núñez-Delgado A., Fernández-Sanjurjo M.J., Álvarez-Rodríguez E., Fernández-Calviño D., Arias-Estévez M. (2020). Tetracycline and sulfonamide antibiotics in soils: presence, fate and environmental risks. Processes., 8: 1479. Search in Google Scholar

Cycoń M., Mrozik A., Piotrowska-Seget Z. (2019). Antibiotics in the soil environment— degradation and their impact on microbial activity and diversity. Front. Microbiol., 10: 338. Search in Google Scholar

De la Fuente C.M., Dauros S.P., Bello T.H., Dominguez Y.M., Mella M.S., Sepulveda A.M., Gonzalez R.G. (2007). Mutations in gyrA and gyrB genes among strains of Gram-negative bacilli isolated from Chilean hospitals and their relation with resistance to fluoroquinolones. Rev. Med. Chile., 135: 1103–1110. Search in Google Scholar

Er B., Onurdağ F.K., Demirhan B., Özgacar S.Ö., Öktem A.B., Abbasoğlu U. (2013). Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poult. Sci., 92: 2212–2215. Search in Google Scholar

Fajardo A., Martínez J.L. (2008). Antibiotics as signals that trigger specific bacterial responses. Curr. Opin. Microbiol., 11: 161–167. Search in Google Scholar

FAO. (2009). How to Feed the World in 2050. High Level Expert Forum – How to Feed the World in 2050. Rome,Italy. https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf Search in Google Scholar

Fischer W.J., Schilter B., Tritscher A.M., Stadler R.H. (2011). Contaminants of milk and dairy products: contamination resulting from farm and dairy practices. Encyclopedia. Dairy. Sci., 2: 887–897. Search in Google Scholar

Forman S., Plante C., Murray G., Rey B., Belton D., Evans B., Steinmetz P. (2012). Position paper: improving governance for effective veterinary services in developing countries – a priority for donor funding. Rev. Sci. Tech. - Off. int. épizoot., 31: 647–660. Search in Google Scholar

Ghimpețeanu O.M., Pogurschi E.N., Popa D.C., Dragomir N., Drăgotoiu T., Mihai O.D., Petcu C.D. (2022). Antibiotic use in livestock and residues in food – a public health threat: A review. Foods., 11: 1430. Search in Google Scholar

Gillings M.R., Gaze W.H., Pruden A., Smalla K., Tiedje J.M., Zhu Y.G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J., 9: 1269–1279. Search in Google Scholar

Gonzalez Ronquillo M.G., Hernandez J.C.A. (2017). Antibiotic and synthetic growth promoters in animal diets: review of impact and analytical methods. Food Control., 72: 255–267. Search in Google Scholar

Gou M., Hu H.W., Zhang Y.J., Wang J.T., Hayden H., Tang Y.Q., He J.Z. (2018). Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Sci. Total Environ., 612: 1300–1310. Search in Google Scholar

Grenni P. (2022). Antimicrobial resistance in rivers: a review of the genes detected and new challenges. Environ. Toxicol., 41: 687–714. Search in Google Scholar

Guetiya Wadoum R.E., Zambou N.F., Anyangwe F.F., Njimou J.R., Coman M.M., Verdenelli M.C., Colizzi V. (2016). Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br. Poult. Sci., 57: 483–493. Search in Google Scholar

Haenni M., Dagot C., Chesneau O., Bibbal D., Labanowski J., Vialette M., Hocquet D. (2022). Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. Environ. Int., 159: 107047. Search in Google Scholar

He T., Wei R., Zhang L., Sun L., Pang M., Wang R., Wang Y. (2017). Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows. Vet. Microbiol., 207: 153–158. Search in Google Scholar

Hedman H.D., Vasco K.A., Zhang L. (2020). A review of antimicrobial resistance in poultry farming within low-resource settings. Animals., 10: 1264. Search in Google Scholar

Helmy Y.A., Taha-Abdelaziz K., Hawwas H.A.E.H., Ghosh S., AlKafaas S.S., Moawad M.M., Mawad A.M. (2023). Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics, 12: 274. Search in Google Scholar

Hernández F.E.L.I.X., Calısto-Ulloa N., Gómez-Fuentes C., Gómez M., Ferrer J., González-Rocha G., Montory M. (2019). Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic. J. Hazard. Mater., 363: 447–456. Search in Google Scholar

Huddleston J.R. (2014). Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect. Drug Resist., 7: 167–176. Search in Google Scholar

Huygens J., Daeseleire E., Mahillon J., Elst D.Van, Decrop J., Meirlaen J., Dewulf J., Heyndrickx M., Rasschaert G. (2021). Presence of Antibiotic Residues and Antibiotic Resistant Bacteria in Cattle Manure Intended for Fertilization of Agricultural Fields: A One Health Perspective. Antibiotics, 10: 410. Search in Google Scholar

Huygens J., Rasschaert G., Heyndrickx M., Dewulf J., Van Coillie E., Quataert P., Becue I. (2022). Impact of fertilization with pig or calf slurry on antibiotic residues and resistance genes in the soil. Sci. Total Environ., 822: 153518. Search in Google Scholar

Jiménez Mejía R., Gudiño Sosa L.F., Aguilar López J.A., Loeza Lara P.D. (2017). Caracterización molecular de Escherichia coli resistente a antibióticos aislada de mastitis bovina en Michoacán, México. Rev. Mex. Cienc. Pecu., 8: 387–396. Search in Google Scholar

Jimenez C.E.P., Keestra S., Tandon P., Cumming O., Pickering A.J., Moodley A., Chandler C.I. (2023). Biosecurity and water, sanitation, and hygiene (WASH) interventions in animal agricultural settings for reducing infection burden, antibiotic use, and antibiotic resistance: a One Health systematic review. Lancet Planet. Health., 7: e418–e434. Search in Google Scholar

Johnston R.W., Reamer R.H., Harris E.W., Fugate H.G., Schwab B. (1981). A new screening method for the detection of antibiotic residues in meat and poultry tissues. J. Food Prot., 44: 828–831. Search in Google Scholar

Kimera Z.I., Mdegela R.H., Mhaiki C.J., Karimuribo E.D., Mabiki F., Nonga H.E., Mwesongo J. (2015). Determination of oxytetracycline residues in cattle meat marketed in the Kilosa district, Tanzania: research communication. J. Vet. Res., 82: 1–5. Search in Google Scholar

Kuppusamy S., Kakarla D., Venkateswarlu K., Megharaj M., Yoon Y.E., Lee Y.B. (2018). Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agric. Ecosyst. Environ., 257: 47–59. Search in Google Scholar

Li F., Chen L., Chen W., Bao Y., Zheng Y., Huang B., Feng C. (2020). Antibiotics in coastal water and sediments of the East China Sea: distribution, ecological risk assessment and indicators screening. Mar. Pollut. Bull., 151: 110810. Search in Google Scholar

Li S., Zhang R., Hu J., Shi W., Kuang Y., Guo X., Sun W. (2019). Occurrence and removal of antibiotics and antibiotic resistance genes in natural and constructed riverine wetlands in Beijing, China. Sci. Total Environ., 664: 546–553. Search in Google Scholar

López-Serna R., Jurado A., Vázquez-Suñé E., Carrera J., Petrović M., Barceló D. (2013). Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ. Pollut., 174: 305–315. Search in Google Scholar

Maghsodian Z., Sanati A.M., Mashifana T., Sillanpää M., Feng S., Nhat T., Ramavandi B. (2022). Occurrence and distribution of antibiotics in the water, sediment, and biota of freshwater and marine environments: a review. Antibiotics, 11: 1461. Search in Google Scholar

Mahmood A.R., Al-Haideri H.H., Hassan F.M. (2019). Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq. Adv. Public Health., 2019: 1–10 Search in Google Scholar

Manaia C.M., Aga D.S., Cytryn E., Gaze W.H., Graham D.W., Guo J., Zhang T. (2022). The Complex interplay between antibiotic resistance and pharmaceutical and personal care products in the environment. Environ. Toxicol. Chem., 43: 637–652. Search in Google Scholar

Manyi-Loh C., Mamphweli S., Meyer E., Okoh A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules., 23: 795. Search in Google Scholar

Maron D.F., Smith T.J., Nachman K.E. (2013). Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Glob. Health., 9: 1–11. Search in Google Scholar

Mehrtens A., Licha T., Burke, V. (2021). Occurrence, effects and behaviour of the antibiotic lincomycin in the agricultural and aquatic environment – a review. Sci. Total Environ., 778: 146306. Search in Google Scholar

Mikula P., Hollerova A., Hodkovicova N., Doubkova V., Marsalek P., Franc A., Blahova J. (2024). Long-term dietary exposure to the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen can affect the physiology of common carp (Cyprinus carpio) on multiple levels, even at “environmentally relevant” concentrations. Sci. Total Environ., 917: 170296. Search in Google Scholar

Mirzaie F., Teymori F., Shahcheragh S., Dobaradaran S., Arfaeinia H., Kafaei R., Ramavandi B. (2022). Occurrence and distribution of azithromycin in wastewater treatment plants, seawater, and sediments of the northern part of the Persian Gulf around Bushehr port: A comparison with Pre-COVID 19 pandemic. Chemosphere, 307: 135996. Search in Google Scholar

Mudenda S., Chabalenge B., Daka V., Mfune R.L., Salachi K.I., Mohamed S., Matafwali S.K. (2023). Global strategies to combat antimicrobial resistance: a One Health perspective. Pharmacol. Pharm.,14: 271–328. Search in Google Scholar

Muriuki F.K., Ogara W.O., Njeruh F.M., Mitema, E.S. (2001). Tetracycline residue levels in cattle meat from Nairobi slaughter house in Kenya. J. Vet. Sci., 2: 97–101. Search in Google Scholar

Myers R.P. (1964). Antibiotics residues in milk. Rev. Environ. Contam. Toxicol., 7: 11–36. Search in Google Scholar

Nchima G., Choongo K., Muzandu K., Nalubamba K., Muma J., Bumbangi F., Kangwa H. (2017). Determination of oxytetracycline and sulphamethazine residues in marketed beef from selected parts of Zambia to assess compliance with maximum residual limits. Am. J. Res. Commun., 5: 42–64. Search in Google Scholar

Nesme J., Cécillon S., Delmont T.O., Monier J.M., Vogel T.M., Simonet P. (2014). Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr. Biol., 24: 1096–1100. Search in Google Scholar

Okaiyeto S.A., Sutar P.P., Chen C., Ni J.B., Wang J., Mujumdar A.S., Xiao H.W. (2024). Antibiotic Resistant Bacteria in Food Systems: Current Status, Resistance Mechanisms, and Mitigation Strategies. Agric. Commun., 100027. Search in Google Scholar

Olatoye I.O., Daniel O.F., Ishola S.A. (2016). Screening of antibiotics and chemical analysis of penicillin residue in fresh milk and traditional dairy products in Oyo state, Nigeria. Vet. World, 9: 948. Search in Google Scholar

Olufemi O.I., Agboola E.A. (2009). Oxytetracycline residues in edible tissues of cattle slaughtered in Akure, Nigeria. J. Food Saf., 11: 62–66. Search in Google Scholar

Palomino-Camargo C., González-Muñoz Y. (2014). Técnicas moleculares para la detección e identificación de patógenos en alimentos: ventajas y limitaciones. Rev. Peru. Med. Exp. Salud Publica., 31: 535–546. Search in Google Scholar

Pérez-Vázquez M., Sola Campoy P.J., Ortega A., Bautista V., Monzón S., Ruiz-Carrascoso G., Oteo-Iglesias J. (2019). Emergence of NDM-producing Klebsiella pneumoniae and Escherichia coli in Spain: phylogeny, resistome, virulence and plasmids encoding bla NDM-like genes as determined by WGS. J. Antimicrob. Chemother., 74: 3489–3496. Search in Google Scholar

PhageGuard. Available online: https://phageguard.com/ (accessed on 14 December 2019). Search in Google Scholar

Pokharel S., Shrestha P., Adhikari B. (2020). Antimicrobial use in food animals and human health: time to implement ‘One Health’approach. Antimicrob. Resist. Infect. Control., 9: 1–5. Search in Google Scholar

Pombinho R., Vieira A., Camejo A., Archambaud C., Cossart P., Sousa S., Cabanes D. (2020). Virulence gene repression promotes Listeria monocytogenes systemic infection. Gut Microbes., 11: 868–881. Search in Google Scholar

Robles-Jimenez L.E., Aranda-Aguirre E., Castelan-Ortega O.A., Shettino-Bermudez B.S., Ortiz-Salinas R., Miranda M., Gonzalez-Ronquillo M. (2021). Worldwide traceability of antibiotic residues from livestock in wastewater and soil: A systematic review. Animals, 12: 60. Search in Google Scholar

Rodriguez-Mozaz S., Vaz-Moreira I., Della Giustina S.V., Llorca M., Barceló D., Schubert S., Manaia C.M. (2020). Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int., 140: 105733. Search in Google Scholar

Salama N.A., Abou-Raya S.H., Shalaby A.R., Emam W.H., Mehaya F.M. (2011). Incidence of tetracycline residues in chicken meat and liver retailed to consumers. Food Addit. Contam. Part B., 4: 88–93. Search in Google Scholar

Schell C.M.B., Sparo M. D., Bernstein J. C., Grenóvero de Dilenque M. S., Delpech G., Pourcel N. G., Basualdo Farjat J.Á. (2014). Factores de virulencia y multirresistencia en cepas de Enterococcus faecalis aisladas de infecciones invasivas humanas. Rev. Argent. Zoonosis Enferm. Infecc. Emerg., 8. Search in Google Scholar

Schmitt H., Stoob K., Hamscher G., Smit E., Seinen W. (2006). Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. Microb. Ecol., 51: 267–276. Search in Google Scholar

Shareef A.M., Jamel Z.T., Yonis, K.M. (2009). Detection of antibiotic residues in stored poultry products. Iraqi J. Vet. Sci., 23: 45–48. Search in Google Scholar

Silva C.C., Silva S.P., Ribeiro S.C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol., 9: 594. Search in Google Scholar

Soni K.A., Nannapaneni R., Hagens S. (2010). Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog. Dis., 7: 427–434. Search in Google Scholar

Sørum H. (2005). Antimicrobial drug resistance in fish pathogens. Antimicrobial resistance in bacteria of animal origin, ASM Press, 213–238. Search in Google Scholar

Tang J.S., Gillevet P.M. (2003). Reclassification of ATCC 9341 from Micrococcus luteus to Kocuria rhizophila. Int. J. Syst. Evol. Microbiol., 53: 995–997. Search in Google Scholar

Tavakoli H.R., Firouzabadi M.S., Afsharfarnia S., Jafari N.J., Sa’Adat S. (2015). Detecting antibiotic residues by HPLC method in chicken and calves meat in diet of a military center in Tehran. Acta. Medica. Mediterranea., 31: 1427–1433. Search in Google Scholar

Tien Y.C., Li B., Zhang T., Scott A., Murray R., Sabourin L., Topp E. (2017). Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Sci. Total Environ., 581: 32–39. Search in Google Scholar

Torres R.T., Carvalho J., Fernandes J., Palmeira J.D., Cunha M.V., Fonseca C. (2021). Mapping the scientific knowledge of antimicrobial resistance in food-producing animals. One Health., 13: 100324. Search in Google Scholar

Van den Meersche T., Rasschaert G., Vanden Nest T., Haesebrouck F., Herman L., Van Coillie E., Heyndrickx M. (2020). Longitudinal screening of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in soils fertilized with pig manure. Environ. Sci. Pollut. Res. Int., 27: 28016–28029. Search in Google Scholar

Venter H., Henningsen M.L., Begg S.L. (2017). Antimicrobial resistance in healthcare, agriculture, and the environment: the biochemistry behind the headlines. Essays Biochem., 61: 1–10. Search in Google Scholar

Vidovic N., Vidovic S. (2020). Antimicrobial resistance and food animals: Influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics., 9: 52. Search in Google Scholar

Vishnuraj M.R., Kandeepan G., Rao K.H., Chand S., Kumbhar V. (2016). Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review. Cogent Food Agric., 2: 1235458. Search in Google Scholar

Vittecoq M., Godreuil S., Prugnolle F., Durand P., Brazier L., Renaud N., Renaud F. (2016). Antimicrobial resistance in wildlife. J. Appl. Ecol., 53: 519–529. Search in Google Scholar

Walsh F., Ingenfeld A., Zampicolli M., Hilber-Bodmer M., Frey J.E., Duffy B. (2011). Real-time PCR methods for quantitative monitoring of streptomycin and tetracycline resistance genes in agricultural ecosystems. J. Microbiol. Methods, 86: 150–155. Search in Google Scholar

Werkneh A.A., Islam M.A. (2023). Post-treatment disinfection technologies for sustainable removal of antibiotic residues and antimicrobial resistance bacteria from hospital wastewater. Heliyon, 9: e15360. Search in Google Scholar

Wu-Wu J.W.F., Guadamuz-Mayorga C., Oviedo-Cerdas D., Zamora W.J. (2023). Antibiotic resistance and food safety: perspectives on new technologies and molecules for microbial control in the food industry. Antibiotics, 12: 550. Search in Google Scholar

Xu C., Kong L., Gao H., Cheng X., Wang X. (2022). A review of current bacterial resistance to antibiotics in food animals. Front Microbiol., 13: 822689. Search in Google Scholar

Yang Y., Song W., Lin H., Wang W., Du L., Xing W. (2018). Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis. Environ. Int., 116: 60–73. Search in Google Scholar

Zhang Y., Cheng D., Zhang Y., Xie J., Xiong H., Wan Y., Shi X. (2021). Soil type shapes the antibiotic resistome profiles of long-term manured soil. Sci. Total Environ., 786: 147361. Search in Google Scholar

Zheng N., Wang J., Han R., Xu X., Zhen Y., Qu X., Yu Z. (2013). Occurrence of several main antibiotic residues in raw milk in 10 provinces of China. Food Addit. Contam. Part B., 6: 84–89. Search in Google Scholar

Zinsstag J., Schelling E., Crump L., Whittaker M., Tanner M., Stephen C. (2021). Editors. One Health: the theory and practice of integrated health approaches. CABI. Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine