Open Access

Hippocampus and jejunum biochemical parameters related to physiological ageing of neurons in rats fed diets with copper nanoparticles and different fiber types


Cite

Angelopoulou E., Paudel Y.N., Papageorgiou S.G., Piperi C. (2021). APOE Genotype and Alzheimer’s Disease: The Influence of Lifestyle and Environmental Factors. ACS Chem. Neurosci., 4: 2749–2764. Search in Google Scholar

Angelova M., Asenova S., Nedkova V., Koleva-Kolarova R. (2011). Copper in the Human Organism. Trakia J. Sci., 9: 11. Search in Google Scholar

Ansari S.A., Emerald B.S. (2019). The Role of Insulin Resistance and Protein O-GlcNAcylation in Neurodegeneration. Front. Neurosci., 13: 473. Search in Google Scholar

Ashrafi G., Ryan T.A. (2017). Glucose metabolism in nerve terminals. Curr. Opin. Neurobiol. Epub., 2017 Jun 9. Search in Google Scholar

Bagheri S., Squitti R., Haertlé T., Siotto M., Saboury A.A. (2018). Role of copper in the onset of Alzheimer’s disease compared to other metals. Front. Aging. Neurosci., 23: 446. Search in Google Scholar

Barclay T., Petrovsky N. (2016). Vaccine adjuvant nanotechnologies micro and nanotechnology in vaccine development., 127–147. Search in Google Scholar

Blomberg M.R.A. (2021). The redox-active tyrosine is essential for proton pumping in Cytochrome c oxidase. Front. Chem., 9: 100. Search in Google Scholar

Calvo-Rodriguez M., Hou S.S., Snyder, A.C. Snyder A.C., Kharitonova E.K., Russ A.N., Das S., Fan Z., Muzikansky A., Garcia-Alloza M., Serrano-Pozo A., Hudry E., Bacskai B.J. (2020). Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun., 11: 2146. Search in Google Scholar

Carabotti M., Scirocco A., Maselli M.A., Severi C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol., 28: 203–209. Search in Google Scholar

Cendrowska-Pinkosz M., Krauze M., Juśkiewicz J., Ognik K. (2021). The effect of the use of copper carbonate and copper nanoparticles in the diet of rats on the level of β-amyloid and acetylcholinesterase in selected organs. J. Trace Elem. Med. Biol., 67. Search in Google Scholar

Cendrowska-Pinkosz M., Ostrowska-Lesko M., Ognik K., Krauze M., Juśkiewicz J., Dąbrowska A., Szponar J., Mandziuk S. (2022). Dietary Copper deficiency leads to changes in gene expression indicating an increased demand for NADH in the prefrontal cortex of the rat’s brain. Int. J. Mol. Sci., 23: 1–15. Search in Google Scholar

Chambonnière M.L., Mosnier-Damet M., Mosnier., J.F. (2001). Expression of microtubule-associated protein tau by gastrointestinal stromal tumors. Hum. Pathol., 32: 1166–1173. Search in Google Scholar

Chen C., Shang C., Xin L., Xiang M., Wang Y., Shen Z., Jiao L., Ding F., Cui X. (2022). Beneficial effects of psyllium on the prevention and treatment of cardiometabolic diseases. Food Funct., 18: 7473–7486. Search in Google Scholar

Cholewińska E., Juśkiewicz J., Ognik K. (2018 a). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J. Trace Elem. Med. Biol. 48: 111–117. Search in Google Scholar

Cholewińska E., Ognik K., Fotschki B., Zduńczyk Z., Juśkiewicz J. (2018 b). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One., 13: e0197083. Search in Google Scholar

Crane P.K., Walker R., Hubbard R.A., Li G., Nathan D.M., Zheng H., Haneuse S., Craft S., Montine T.J., Kahn S.E. (2013). Glucose Levels and Risk of Dementia. N. Engl. J. Med., 369: 540–548. Search in Google Scholar

Cui Y., Zhang N.N., Wang D., Meng W.H., Chen H.S. (2022). Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting nlrp3 inflammasome activation via tlr4/nfĸb signaling pathway in microglia. J. Inflamm. Res., 15: 3369–3385. Search in Google Scholar

De Leeuw J., Bolhuis J., Bosch G., Gerrits W. (2008). Effects of dietary fibre on behaviour and satiety in pigs: Symposium on Behavioral nutrition and energy balance in the young’. Proc. Nutr. Soc., 67: 334–342. Search in Google Scholar

Dhahri M., Alghrably M., Mohammed H.A., Badshah S.L., Noreen N., Mouffouk F., Rayyan S., Qureshi K.A., Mahmood D., Lachowicz J.I., Jaremko M., Abdul-Hamid E. (2022). Natural polysaccharides as preventive and therapeutic horizon for neurodegenerative diseases. Pharmaceutics., 14: 1. Search in Google Scholar

Divyashri G., Sadanandan B., Chidambara Murthy K.N., Shetty K., Mamta K. (2021). Neuroprotective potential of non-digestible oligosaccharides: an overview of experimental evidence. Front. Pharmacol., 23: 712531. Search in Google Scholar

Dugger B.N., Whiteside C.M., Maarouf C.L., Walker D.G., Beach T.G., Sue LI. (2016). The presence of select tau species in human peripheral tissues and their relation to Alzheimer’s disease. J. Alzheimers Dis., 51: 345–356. Search in Google Scholar

Emmett S.R., Greenfield S.A. (2004). Peptide derived from the C-terminal region of acetylcholinesterase modulates extracellular concentrations of acetylcholinesterase in the rat substantia nigra. Neurosci. Lett. 358: 210–214. Search in Google Scholar

Fatma U., Afifi-Yazar H., Kasabri V. (2011). Medicinal plants from Jordan in the treatment of diabetes: traditional uses vs. in vitro and in vivo evaluations – Part 2. Planta Med., 77: 1210–1220. Search in Google Scholar

Ferenc K., Jarmakiewicz-Czaja S., Filip R. (2023). Components of the fiber diet in the prevention and treatment of IBD—an update. Nutrients., 15: 162. Search in Google Scholar

Fernando W.M., Rainey-Smith S.R., Gardener S.L., Villemagne V.L., Burnham S.C., Macaulay S.L., Brown B.M., Gupta V.B., Sohrabi H.R., Weinborn M., Taddei K., Laws S.L., Goozee K., Ames D., Fowler C., Maruff P., Masters C., Salvado O., Rowe C., Martins R. (2018). Associations of dietary protein and fiber intake with brain and blood amyloid-β. J. Alzheimer’s Dis., 61: 1589–1598. Search in Google Scholar

Ferrando M.R., Lay L., Polito L. (2021). Gold nanoparticle-based platforms for vaccine development, Drug. Discov. Today: Technol., 38: 57–67. Search in Google Scholar

Flanagan E., Lamport D., Brennan L., Burnet P., Calabrese V., Cunnane S.C., De Wilde M.C., Dye L., Farrimond J.A., Lombardo N.E., Hartmann T., Hartung, T., Kalliomäki M., Kuhnle G.G., La Fata, G., Sala-Vila A., Samieri C., Smith, A.D., Spencer, J.P.E., Vauzour D. (2020). Nutrition and the ageing brain: Moving towards clinical applications. ARR, 62: 101079. Search in Google Scholar

Gallo F., DeLuca V., Prystauka Y., Voits T., Rothman J., Abutalebi J. (2022). Bilingualism and aging: Implications for (Delaying) neurocognitive decline. Front. Hum. Neurosci., 16:819105. Search in Google Scholar

Gao X., Chen Q., Yao H., Tan J., Liu Z., Zhou Y., Zou Z. (2022). Epigenetics in Alzheimer’s disease. Front. Aging. Neurosci., 23: 911635. Search in Google Scholar

Götz J., Schild A., Hoerndli F., Pennanen L. (2004). Amyloid-induced neurofibrillary tangle formation in Alzheimer’s disease: insight from transgenic mouse and tissue-culture models. Int. J. Dev. Neurosci., 22: 453–465. Search in Google Scholar

Gu Y., Oyama F., Ihara Y. (1996). Tau is widely expressed in rat tissues. J. Neurochem., 67: 1235–1244. Search in Google Scholar

Hayama-Terada M., Muraki I., Okada C., Tanaka M., Kishida R., Kihara T., Ohira T., Imano H., Brunner E.J. Sankai T., Okada T., Tanigawa T., Kitamura A., Kiyama M., Iso H. (2023). Dietary fiber intake and risk of incident disabling dementia: The circulatory risk in communities study. Nutr Neurosci., 26: 148–155. Search in Google Scholar

Kawahara M., Ohtsuka I., Yokoyama S., Kato-Negishi M., Sadakane Y. (2011). Membrane incorporation, channel formation, and disruption of calcium homeostasis by Alzheimer’s β-amyloid protein. Int. J. Alzheimers Dis., 12: 304583. Search in Google Scholar

Kimura Y., Yoshida D., Hirakawa Y., Hata J., Honda T., Shibata M., Sakata S., Uchida K., Kitazono T., Ninomiya T. (2021). Dietary fiber intake and risk of type 2 diabetes in a general Japanese population: The Hisayama study. J. Diabetes Investig., 12: 527–536. Search in Google Scholar

Krauze M., Jurczak P., Cendrowska-Pinkosz M., Stępniowska A., Matusevičius P., Ognik K. (2023). Feasibility of including a phytobiotic containing cinnamon oil in the diet to reduce the occurrence of neurodegenerative changes in broiler chicken tissues. J. Anim. Feed Sci., 32: 164–173. Search in Google Scholar

Krauze M., Ognik K., Mikulski D., Jankowski J. (2022). Assessment of neurodegenerative changes in turkeys fed diets with different proportions of arginine and methionine relative to lysine. Animals (Basel). 14: 1535. Search in Google Scholar

Li Y., Shen M., Stockton M.E., Zhao X. (2019). Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem. 165: 106945. Search in Google Scholar

Lionnet A., Wade M.A., Corbillé A.G. (2018). Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy. Acta Neuropathol. Commun., 6: 65. Search in Google Scholar

Mayes J., Tinker-Mill C., Kolosov O., Zhang H., Tabner B.J., Allsop D. (2014). β-Amyloid fibrils in Alzheimer disease are not inert when bound to copper ions but can degrade hydrogen peroxide and generate reactive oxygen species. J. Biol. Chem., 289: 12052–12062. Search in Google Scholar

Maynard C.J., Bush A.I., Masters C.L., Cappai R., Li Q.X. (2005). Metals and amyloid-beta in Alzheimer’s disease. Int. J. Exp. Pathol., 86: 147–159. Search in Google Scholar

McRorie J.W. (2015). Psyllium is not fermented in the human gut. Neurogastroenterol. Motil., 27: 1681–1682. Search in Google Scholar

Mello F.V.C., de Moraes G.N., Maia R.C., Kyeremateng J., Iram S.H., Santos-Oliveira R. (2020). The effect of nanosystems on ATP-binding cassette transporters: understanding the influence of nanosystems on multidrug resistance protein-1 and p-glycoprotein. Int. J. Mol. Sci., 21: 26–30. Search in Google Scholar

Michalicova A., Majerova P., Kovac A. (2020). Tau protein and its role in blood–brain barrier dysfunction. Front. Mol. Neurosci., 13: 570045. Search in Google Scholar

Muneer A. (2017). Wnt and GSK3 Signaling Pathways in Bipolar Disorder: Clinical and Therapeutic Implications. Clin. Psychopharmacol. Neurosci., 31: 100–114. Search in Google Scholar

Nuzzo D., Pasquale P., Giardina C., Scordino M., Mudo G., Pagliaro M., Scurria A., Meneguzzo F., Ilharco L., Fidalgo A., Alduina R., Presentato A., Ciriminna R., Di Liberto V. (2021). New neuroprotective effect of lemon integropectin on neuronal cellular model. Antioxidants. 10: 669. Search in Google Scholar

Orr M.E., Garbarino V.R., Salinas A., Buffenstein R. (2015). Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the longest-lived rodent. Neurobiol. Aging., 36: 1496–1504. Search in Google Scholar

Patel R., Aschner M. (2021). Commonalities between copper neurotoxicity and Alzheimer’s disease. Toxics. 9: 4. Search in Google Scholar

Poulson B.G., Szczepski K., Lachowicz J.I., Jaremko L., Emwas A.-H., Jaremko M. (2020). Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv., 10: 215–227. Search in Google Scholar

Rauch J.N., Luna G., Guzman E., Audouard M., Challis C., Sibih Y.E., Leshuk C., Hernandez I., Wegmann S., Hyman B.T., Gradinaru V., Kampmann M., Kosik K.S. (2020). LRP1 is a master regulator of tau uptake and spread. Nature., 580: 381–385. Search in Google Scholar

Rossi L., Lombardo M.F., Ciriolo M.R., Rotilio G. (2004). Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem. Res., 29: 493–504. Search in Google Scholar

Rowe E.M., Xing V., Biggar K.K. (2019). Lysine methylation: Implications in neurodegenerative disease. Brain Res., 1707: 164–171. Search in Google Scholar

Ruiz L.M., Libedinsky A. Elorza A.A. (2021). Role of Copper on mitochondrial function and metabolism. Front. Mol. Biosci., 8: 711227. Search in Google Scholar

Sa´ez-Valero J., Fodero L.R., Sjogren M., Andreasen N., Amici S., Gallai V., Vanderstichele H., Vanmechelen E., Parnetti L., Blennow B., Small D.H. (2003). Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer’s disease. J. Neur. Res., 72: 520–526. Search in Google Scholar

Santillán-Urquiza E., Arteaga-Cardona F., Hernandez-Herman E., Pacheco-García P.F., González-Rodríguez R., Coffer J.L., Mendoza-Alvarez M.E., Vélez-Ruiz J.F., Méndez-Rojas M.A. (2015). Inulin as a novel biocompatible coating: evaluation of surface affinities toward CaHPO4, α-Fe2O3, ZnO, CaHPO4, ZnO and α-Fe2O3,ZnO nanoparticles. J. Colloid. Interface. Sci., 15: 339–348. Search in Google Scholar

Schroeder B.O., Birchenough G.M.H., Stahlman M., Arike L., Johansson M.E.V., Hansson G.C., Bäckhed F. (2018). Bifidobacteria or fiber protects against diet induced microbiota mediated colonic mucus deterioration. Cell Host. Microbe., 23: 27–37. Search in Google Scholar

Shah AR., Sharma P., Longvah T., Gour VS., Kothari S., Shah YR., Ganie S.A. (2020). Nutritional composition and health benefits of psyllium (Plantago ovata) husk and seed. Nutrition Today., 55: 313–321. Search in Google Scholar

Shi H., Ge X., Ma X., Zheng M., Cui X., Pan W., Zheng P., Yang X., Zhang P., Hu M. (2021). A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome., 9: 223. Search in Google Scholar

Šimić G, Vukić V, Babić M, Banović M, Berečić I, Španić E, Zubčić K, Golubić AT, Barišić Kutija M, Merkler Šorgić A., Vogrinc Ž., Lehman I., Hof P.R., Sertić J., Barišić N. (2022). Total tau in cerebrospinal fluid detects treatment responders among spinal muscular atrophy types 1–3 patients treated with nusinersen. CNS Neurosci Ther., 13. Search in Google Scholar

Stefaniak O., Dobrzyńska M., Drzymała-Czyż S., Przysławski J. (2022). Diet in the prevention of Alzheimer’s Disease: current knowledge and future research requirements. Nutrients., 30: 45–64. Search in Google Scholar

Tam P.K. (1999). An immunohistological study of the human enteric nervous system with microtubule-associated proteins. Gastroenterology, 99: 1841–1844. Search in Google Scholar

Tamaki C., Ohtsuki S., Iwatsubo T., Hashimoto T., Yamada K., Yabuki C., Terasaki T. (2006). Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm Res., 23: 1407–1416. Search in Google Scholar

Tapiero H., Townsend D.M., Tew K.D. (2003). Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother., 57: 386–398. Search in Google Scholar

Taylor M.K., Sullivan D.K., Swerdlow R.H., Vidoni E.D., Morris J.K., Mahnken J.D., Burns J.M. (2017). A High-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am. J. Clin. Nutr., 106: 1463–1470. Search in Google Scholar

Tönnies E., Trushina E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis., 57: 1105–1121. Search in Google Scholar

Uddin M.S., Al Mamun A., Rahman M.A., Behl T., Perveen A., Hafeez A., Bin-Jumah M.N., Abdel-Daim M.M., Ashraf G.M. (2020). Emerging proof of protein misfolding and interactions in multifactorial Alzheimer’s disease. Curr. Top. Med. Chem., 20: 2380–2390. Search in Google Scholar

Underhill S.M., Amara S.G. (2021). Acetylcholine receptor stimulation activates protein kinase C mediated internalization of the dopamine transporter. Front. Cell. Neurosci., 15: 662216. Search in Google Scholar

Voss K., Harris C., Ralle M., Duffy M., Murchison C., Quinn J.F. (2014). Modulation of tau phosphorylation by environmental copper. Transl. Neurodegener., 17: 24. Search in Google Scholar

Wahl D., Cogger V., Solon-Biet S. (2016). Nutritional strategies to optimize cognitive function in the aging brain Ageing. Res Rev., 31: 80–92. Search in Google Scholar

Walton E.L. (2018). For better or worse: Immune system involvement in Alzheimer’s disease. Biomed. J., 41: 1–4. Search in Google Scholar

Wang N., Wang X., He M., Zheng W., Qi D., Zhang Y., Han C.C. (2021). Ginseng polysaccharides: A potential neuroprotective agent. J. Ginseng. Res., 45: 211–217. Search in Google Scholar

Wang Y., Tang H., Xu M., Luo J., Zhao L., Shi F., Ye G., Lv C., Li Y. (2019). Effect of copper nanoparticles on brain cytochrome P-450 enzymes in rats. Mol. Med. Rep., 20: 771–778. Search in Google Scholar

Wu Y.H., Hsieh H.L. (2023). Effects of redox homeostasis and mitochondrial damage on Alzheimer’s disease. Antioxidants, 12: 1816. Search in Google Scholar

Yamagishi K., Maruyama K., Ikeda A., Nagao M., Noda H., Umesawa M., Hayama-Terada M., Muraki I., Okada C., Tanaka M., Kishida R., Kihara T., Ohira T., Imano H., Brunner E.J., Sankai T., Okada T., Tanigawa T., Kitamura A., Kiyama M., Iso H. (2023). Dietary fiber intake and risk of incident disabling dementia: The circulatory risk in communities study. Nutr Neurosci., 26: 148–155. Search in Google Scholar

Yanckello L.M., Fanelli B., McCulloch S., Xing X., Sun M., Hammond T.C., Colwell R., Gu Z., Ericsson A.C., Chang Y.H., Bachstetter A.D., Lin A.L. (2022). Inulin supplementation mitigates gut dysbiosis and brain impairment induced by mild traumatic brain injury during chronic phase. J. Cell Immunol., 4: 50–64. Search in Google Scholar

Zubčić K., Hof P.R., Šimić G., Jazvinšćak J.M. (2020). The role of copper in tau-related pathology in Alzheimer’s disease. Front. Mol. Neurosci., 10: 572308. Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine