Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
Open Access

Capric and lauric acid mixture decreased rumen methane production, while combination with nitrate had no further benefit in methane reduction

Published Online: 27 Feb 2023
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 14 Sep 2022
Accepted: 17 Jan 2023
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Almeida K.V., Santos G.T., Daniel J.L.P., Nino-de-Guzman C., Amaro F.X., Sultana H., Arriola K.G., Araujo R.C., Vyas D. (2022). Effects of nitrate sources on in vitro methane production and ruminal fermentation parameters in diets differing in starch degradability. Anim. Feed Sci. Technol., 292: 115437. Search in Google Scholar

Beauchemin K.A., Ungerfeld E.M., Eckard R.J., Wang M. (2020). Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14: s2–s16. Search in Google Scholar

Božic A.K., Anderson R.C., Carstens G.E., Ricke S.C., Callaway T.R., Yokoyama M.T., Wang J.K., Nisbet D.J. (2009). Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin® and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro. Bioresour. Technol., 100: 4017–4025. Search in Google Scholar

Burdick M., Zhou M., Guan L.L., Oba M. (2022). Effects of medium-chain fatty acid supplementation on performance and rumen fermentation of lactating Holstein dairy cows. Animal, 16(4): 100491. Search in Google Scholar

Castro-Montoya J., Peiren N., Cone J.W., Zweifel B., Fievez, V., De Campeneere S. (2015). In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation. Livest. Sci., 180: 134–142. Search in Google Scholar

Chadeganipour M., Haims A. (2001). Antifungal activities of pelargonic and capric acid on Microsporum gypseum. Mycoses., 44: 109–112. Search in Google Scholar

Correddu F., Nudda A., Battacone G., Boe R., Francesconi A.H.D., Pulina G. (2015). Effects of grape seed supplementation, alone or associated with linseed, on ruminal metabolism in Sarda dairy sheep. Anim. Feed Sci. Technol., 199: 61–72. Search in Google Scholar

Dehority B.A. (1993). Laboratory manual for classification and morphology of rumen ciliate protozoa. Boca Raton: CRC Press. Search in Google Scholar

Desbois A.P., Smith V.J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol., 85: 1629–1642. Search in Google Scholar

Dohme F., Machmüller A., Wasserfallen A., Kreuzer M. (2001). Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol., 32: 47–51. Search in Google Scholar

Eggleston S., Buendia L., Miwa K., Ngara T., Tanabe K. (2006). IPCC guidelines for national greenhouse gas inventories. Hayama: Institute for Global Environmental Strategies. Search in Google Scholar

European Union. (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Official Journal of the European Union, 276: 33–79. Search in Google Scholar

Faciola A.P., Broderick G.A. (2013). Effects of feeding lauric acid on ruminal protozoa numbers, fermentation, and digestion and on milk production in dairy cows1. J. Anim. Sci., 91: 2243–2253. Search in Google Scholar

Goel G., Arvidsson K., Vlaeminck B., Bruggeman G., Deschepper K., Fievez V. (2009). Effects of capric acid on rumen methanogenesis and biohydrogenation of linoleic and α-linolenic acid. Animal, 3: 810–816. Search in Google Scholar

Harfoot C.G., Hazlewood G.P. (1997). Lipid metabolism in the rumen. In: Hobson PN, Stewart CS, editors. The rumen microbial ecosystem. Dordrecht: Springer Netherlands; p. 382–426. Search in Google Scholar

Hollmann M., Powers W.J., Fogiel A.C., Liesman J.S., Bello N.M., Beede D.K. (2012). Enteric methane emissions and lactational performance of Holstein cows fed different concentrations of coconut oil. J. Dairy Sci., 95: 2602–2615. Search in Google Scholar

Hristov A.N., Ivan M., McAllister T.A. (2004). In vitro effects of individual fatty acids on protozoal numbers and on fermentation products in ruminal fluid from cattle fed a high-concentrate, barley-based diet. J. Anim. Sci., 82: 2693–2704. Search in Google Scholar

Hristov A.N., Lee C., Cassidy T., Long M., Heyler K., Corl B., Forster R. (2011). Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci., 94: 382–395. Search in Google Scholar

Hristov A.N., Vander Pol M., Agle M., Zaman S., Schneider C., Ndegwa P., Vaddella V.K., Johnson K., Shingfield K.J., Karnati S.K.R. (2009). Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows. J. Dairy Sci., 92: 5561–5582. Search in Google Scholar

Jackson R.B., Saunois M., Bousquet P., Canadell J.G., Poulter B., Stavert A.R., Bergamaschi P., Niwa Y., Segers A., Tsuruta A. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett., 15: 071002. Search in Google Scholar

Joch M., Kudrna V., Hakl J., Božik M., Homolka P., Illek J., Tyrolová Y., Výborná A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Anim. Feed Sci. Technol., 251: 176–186. Search in Google Scholar

Joch M., Výborná A., Tyrolová Y., Kudrna V., Trakal L., Vadroňová M., Tichá D., Pohořelý M. (2022). Feeding biochar to horses: Effects on nutrient digestibility, fecal characteristics, and blood parameters. Anim. Feed Sci. Technol., 285: 115242. Search in Google Scholar

Johnson K.A., Johnson D.E. (1995). Methane emissions from cattle. J. Anim. Sci., 73: 2483–2492. Search in Google Scholar

Jordan E., Lovett D.K., Hawkins M., Callan J.J., O’Mara F.P. (2006). The effect of varying levels of coconut oil on intake, digestibility and methane output from continental cross beef heifers. Anim. Sci. J., 82: 859–865. Search in Google Scholar

Kaps M., Lamberson W.R. (2004). Biostatistics for animal science. 1st ed. Wallingford (UK): CABI.10.1079/9780851998206.0000 Search in Google Scholar

Kim S.A., Rhee M.S. (2016). Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157:H7. Food Control., 60: 447–454. Search in Google Scholar

Latham E.A., Anderson R.C., Pinchak W.E., Nisbet D.J. (2016). Insights on alterations to the rumen ecosystem by nitrate and nitrocompounds. Front. Microbiol., 7: 228. Search in Google Scholar

Machmüller A. (2006). Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agric. Ecosyst. Environ., 112: 107–114. Search in Google Scholar

Marounek M., Skřivanová V., Savka O. (2002). Effect of caprylic, capric and oleic acid on growth of rumen and rabbit caecal bacteria. J. Anim. Feed Sci., 11: 507–516. Search in Google Scholar

Martínez-Fernández G., Abecia L., Martín-García A.I., Ramos-Morales E., Hervás G., Molina-Alcaide E., Yáñez-Ruiz D.R. (2013). In vitro-in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats. Animal, 7: 1925–1934. Search in Google Scholar

Menke K.H., Raab L., Salewski A., Steingass H., Fritz D., Schneider W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci., 93: 217–222. Search in Google Scholar

Mohammed N., Ajisaka N., Lila Z.A., Hara K., Mikuni K., Hara K., Kanda S., Itabashi H. (2004). Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci., 82: 1839–1846. Search in Google Scholar

Monteny G.J., Erisman J.W. (1998). Ammonia emission from dairy cow buildings: a review of measurement techniques, influencing factors and possibilities for reduction. Neth. J. Agri. Sci., 46: 225–247. Search in Google Scholar

Patra A.K., Park T., Kim M., Yu Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol., 8: 13. Search in Google Scholar

Patra A.K., Yu Z. (2014). Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Bioresour. Technol., 155: 129–135. Search in Google Scholar

Patra A.K., Yu Z. (2015a). Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol., 6: 1434.10.3389/fmicb.2015.01434468668126733975 Search in Google Scholar

Patra A.K., Yu Z. (2015b). Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations. J. Appl. Microbiol., 119: 127–138.10.1111/jam.1281925846054 Search in Google Scholar

Reynolds C.K., Dürst B., Lupoli B., Humphries D.J., Beever D.E. (2004). Visceral tissue mass and rumen volume in dairy cows during the transition from late gestation to early lactation. J. Dairy Sci., 87: 961–971. Search in Google Scholar

Rode L.M., Weakley D.C., Satter L.D. (1985). Effect of forage amount and particle size in diets of lactating dairy cows on site of digestion and microbial protein synthesis. Can. J. Anim. Sci., 65: 101–111. Search in Google Scholar

Romero-Pérez A., Beauchemin K.A. (2018). Estimating gas volume from headspace pressure in a batch culture system. Can. J. Anim. Sci., 98: 593–596. Search in Google Scholar

Saunois M., Stavert A.R., Poulter B., Bousquet P., Canadell J.G., Jackson R.B., Raymond P.A., Dlugokencky E.J., Houweling S., Patra P.K., Ciais P., Arora V.K., Bastviken D., Bergamaschi P., Blake D.R., Brailsford G., Bruhwiler L., Carlson K.M., Carrol M., Castaldi S., Chandra N., Crevoisier C., Crill P.M., Covey K., Curry C.L., Etiope G., Frankenberg C., Gedney N., Hegglin M.I., Höglund-Isaksson L., Hugelius G., Ishizawa M., Ito A., Janssens-Maenhout G., Jensen K.M., Joos F., Kleinen T., Krummel P.B., Langenfelds R.L., Laruelle G.G., Liu L., Machida T., Maksyutov S., McDonald K.C., McNorton J., Miller P.A., Melton J.R., Morino I., Müller J., Murguia-Flores F., Naik V., Niwa Y., Noce S., O’Doherty S., Parker R.J., Peng C., Peng S., Peters G.P., Prigent C., Prinn R., Ramonet M., Regnier P., Riley W.J., Rosentreter J.A., Segers A., Simpson I.J., Shi H., Smith S.J., Steele L.P., Thornton B.F., Tian H., Tohjima Y., Tubiello F.N., Tsuruta A., Viovy N., Voulgarakis A., Weber T.S., van Weele M., van der Werf G.R., Weiss R.F., Worthy D., Wunch D., Yin Y., Yoshida Y., Zhang W., Zhang Z., Zhao Y., Zheng B., Zhu Q., Zhu, Q., Zhuang Q. (2020). The global methane budget 2000–2017. Earth Syst. Sci. Data., 12: 1561–1623. Search in Google Scholar

Schwab C.G., Broderick G.A. (2017). A 100-Year Review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci., 100: 10094–10112. Search in Google Scholar

Soliva C.R., Hindrichsen I.K., Meile L., Kreuzer M., Machmüller A. (2003). Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol., 37: 35–39. Search in Google Scholar

Soto E.C., Yáñez-Ruiz D.R., Cantalapiedra-Hijar G., Vivas A., Molina-Alcaide E. (2012). Changes in ruminal microbiota due to rumen content processing and incubation in single-flow continuous-culture fermenters. Anim. Prod. Sci., 52: 813–822. Search in Google Scholar

Theodorou M.K., Gascoyne D.J., Akin D.E., Hartley R.D. (1987). Effect of phenolic acids and phenolics from plant cell walls on rumenlike fermentation in consecutive batch culture. Appl. Environ. Microbiol., 53: 1046–1050. Search in Google Scholar

Van Keulen J., Young B.A. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci., 44: 282–287. Search in Google Scholar

van Zijderveld S.M., Gerrits W.J.J., Dijkstra J., Newbold J.R., Hulshof R.B.A., Perdok H.B. (2011). Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci., 94: 4028–4038. Search in Google Scholar

Weatherburn M.W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 39: 971–974. Search in Google Scholar

Yabuuchi Y., Matsushita Y., Otsuka H., Fukamachi K., Kobayashi Y. (2006). Effects of supplemental lauric acid-rich oils in high-grain diet on in vitro rumen fermentation. Anim. Sci. J., 77: 300–307. Search in Google Scholar

Yanza Y.R., Szumacher-Strabel M., Jayanegara A., Kasenta A.M., Gao M., Huang H., Patra A.K., Warzych E., Cieślak A. (2021). The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and in vivo: A meta-analysis. J. Anim. Physiol. Anim. Nutr., 105: 874–889. Search in Google Scholar

Zhou X., Meile L., Kreuzer M., Zeitz J.O. (2013). The effect of saturated fatty acids on methanogenesis and cell viability of methanobrevibacter ruminantium. Archaea, 2013: e106916. Search in Google Scholar

Zhou Z., Yu Z., Meng Q. (2012). Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Bioresour. Technol., 103: 173–179. Search in Google Scholar

Recommended articles from Trend MD