Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Lactobacillus casei (IBRC-M 10,711) ameliorates the growth retardation, oxidative stress, and immunosuppression induced by malathion toxicity in goldfish (Carassius auratus)

Published Online: 16 May 2022
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 25 Jan 2022
Accepted: 21 Mar 2022
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Probiotics can functionality improve fish wellbeing and are suggested as antioxidative agents to protect fish from xenobiotics toxicity. Herein, dietary Lactobacillus casei (IBRC-M 10,711) was included in the diets of goldfish (Carassius auratus) to protect against malathion toxicity. Fish (12.47 ± 0.06 g) were randomly allocated to six groups (triplicates), as follows: T1) control; T2) fish exposed to 50% of malathion 96 h LC50; T3) L. casei at 106 CFU/g diet; T4) L. casei at 107 CFU/g diet; T5) fish exposed to 50% of malathion 96 h LC50 + L. casei at 106 CFU/g diet; T6) fish exposed to 50% of malathion 96 h LC50 + L. casei at 107 CFU/g diet. After 60 days, goldfish fed T4 had the highest final body weight (FBW), weight gain (WG), and specific growth rate (SGR), and the lowest feed conversion ratio (FCR) among the groups (P < 0.05). However, the T2 group showed lower FBW, WG, and SGR and higher FCR than fish in T1 (P < 0.05). Fish in the T4 group had the highest blood total proteins, albumin, and globulin, while fish in T2 had the lowest levels (P < 0.05). Fish in the group T2 had the highest triglycerides, cholesterol, cortisol, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels in the blood, while fish fed T4 had the lowest values (P < 0.05). The superoxide dismutase (SOD) and catalase (CAT) showed the highest activities in T3 and T4 groups, and the lowest SOD was seen in the T2 group, whereas the lowest CAT was seen in the T2, T5, and T6 groups (P < 0.05). Fish in the T5 and T6 groups had higher glutathione peroxidase (GSH-Px) activities than fish in T1 and T2 groups but T3 and T4 groups showed the highest values (P < 0.05). T2 group had the highest malondialdehyde (MDA) level, while T3 and T4 groups had the lowest MDA level (P < 0.05). Blood immunoglobulin (Ig) and lysozyme activity were significantly higher in T3 and T4 groups and lower in the T2 group than in the control (P < 0.05). The alternative complement pathway (ACH50) was significantly higher in T2, T3, T4, T5, and T6 groups than in the T1 group (P < 0.05). Skin mucus Ig was significantly higher in T3 and T4 groups and lower in the T2 group than in the control (P < 0.05). The highest lysozyme activity, protease, and ACH50 in the skin mucus samples were in the T4 group, while the lowest values were in the T2 group (P < 0.05). In conclusion, dietary L. casei protects goldfish from malathion-induced growth retardation, oxidative stress, and immunosuppression.


Abarghoei S., Hedayati S. A., Ghafari Farsani H., Gerami M. H. (2015). Hematological responses of Goldfish (Carassius auratus) to different acute concentrations of Silver Sulfate as a toxicant. Pollution., 1: 247-256 Search in Google Scholar

Abdel-Warith A.-W.A., Younis E.M., Al-Asgah N.A., Gewaily M.S., El-Tonoby S.M., Dawood M.A. (2021). Role of Fucoidan on the Growth Behavior and Blood Metabolites and Toxic Effects of Atrazine in Nile Tilapia Oreochromis niloticus (Linnaeus, 1758). Animals., 11:1448. Search in Google Scholar

Abdo S.E., Gewaily M.S., Abo-Al-Ela H.G., Almeer R., Soliman A.A., Elkomy A.H., Dawood M.A.O. (2021). Vitamin C rescues inflammation, immunosuppression, and histopathological alterations induced by chlorpyrifos in Nile tilapia. Environ Sci Pollut Res., 28: 28750-28763. Search in Google Scholar

Adorian T. J., Jamali H., Farsani H. G., Darvishi P., Hasanpour S., Bagheri T., Roozbehfar R. (2019). Effects of probiotic bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics Antimicrob Proteins., 11: 248-255. Search in Google Scholar

Bautista-Covarrubias J.C., Aguilar-Juárez M., Voltolina D., Navarro-Nava R.G., Aranda-Morales S.A., Arreola-Hernández J.O., Soto-Jiménez M.F., Frías-Espericueta M.G. (2020). Immunological response of white shrimp (Litopenaeus vannamei) to sublethal concentrations of malathion and endosulfan, and their mixture. Ecotoxicol Environ Saf., 188: 109893. Search in Google Scholar

Beutler E. (1963). Improved method for the determination of blood glutathione. J Lab Clin Med., 61: 882-888. Search in Google Scholar

Bharti S., Rasool F. (2021). Analysis of the biochemical and histopathological impact of a mild dose of commercial malathion on Channa punctatus (Bloch) fish. Toxicol Rep., 8: 443-455. Search in Google Scholar

Brown R., Moore L., Mani A., Patel S., Salinas I. (2021). Effects of ploidy and salmonid alphavirus infection on the skin and gill microbiome of Atlantic salmon (Salmo salar). Plos one., 16(2), e0243684.10.1371/journal.pone.0243684789486533606747 Search in Google Scholar

Brun N.R., van Hage P., Hunting E.R., Haramis A.-P.G., Vink S.C., Vijver M.G., Schaaf M.J.M., Tudorache C. (2019). Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun Biol., 2: 382. Search in Google Scholar

Cengiz E.I., Unlu E. (2006). Sublethal effects of commercial deltamethrin on the structure of the gill, liver and gut tissues of mosquitofish, Gambusia affinis: A microscopic study. Environ Toxicol Pharmacol., 21: 246-253. Search in Google Scholar

Chang C.-P., Hou P.-H., Yang W.-C., Wu C.-F., Chang C.-C., Tsai M.-Y., Tsai H.-P., Lin C.-T., Xue Y.-J., Wang J.-H., Chang G.-R. (2020). Analytical Detection of Sulfonamides and Organophosphorus Insecticide Residues in Fish in Taiwan. Molecules., 25: 1501. Search in Google Scholar

Chen, D. Zhang Q., Tang W., Huang Z., Wang G., Wang Y., Shi J., Xu H., Lin L., Li Z., Chi W., Huang L., Xia J., Zhang X., Guo L., Wang Y., Ma P., Tang J., Zhou G., Liu M., Liu F., Hua X., Wang B., Shen Q., Jiang Q., Lin J., Chen X., Wang H., Dou M., Liu L., Pan H., Qi Y., Wu B., Fang J., Zhou Y., Cen W., He W., Zhang Q., Xue T., Lin G., Zhang W., Liu Z., Qu L., Wang A., Ye Q., Chen J., Zhang Y., Ming R., Van Montagu M., Tang H., Van de Peer Y., Chen Y., Zhang J. (2020). The evolutionary origin and domestication history of goldfish (Carassius auratus). Proceedings of the National Academy of Sciences., 117: 29775. Search in Google Scholar

Chorehi M. M., Ghaffari H., Hossaini S. A., Niazie E. H. N., Vajargah M. F., Hedayati A. (2013). Acute toxicity of Diazinon to the Caspian vimba, Vimba vimba persa (Cypriniformes: Cyprinidae). Int. J. Aquat. Biol., 1: 254-257. Search in Google Scholar

Coz-Rakovac R., Smuc T., Topic Popovic N., Strunjak-Perovic I., Hacmanjek M., Jadan M. (2008). Novel methods for assessing fish blood biochemical data. Appl Ichthyol., 24: 77-80. Search in Google Scholar

Dawn-Linsley M., Ekinci F.J., Ortiz D., Rogers E., Shea T.B. (2005). Monitoring thiobarbituric acid-reactive substances (TBARs) as an assay for oxidative damage in neuronal cultures and central nervous system. J Neurosci Methods., 141: 219-222. Search in Google Scholar

Dawood M.A.O. (2021). Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev Aquac., 13: 642-663. Search in Google Scholar

Dawood M.A.O., Abdel-Razik N.I., Gewaily M.S., Sewilam H., Paray B.A., Soliman A.A., Abdelhiee E.Y., Aboubakr M., Van Doan H., El-Sabagh M., El Basuini M.F. (2020). β-Glucan improved the immunity, hepato-renal, and histopathology disorders induced by chlorpyrifos in Nile tilapia. Aquac Rep., 18: 100549. Search in Google Scholar

De Anna J.S., Castro J.M., Darraz L.A., Elías F.D., Cárcamo J.G., Luquet C.M. (2021). Exposure to hydrocarbons and chlorpyrifos alters the expression of nuclear receptors and antioxidant, detoxifying, and immune response proteins in the liver of the rainbow trout, Oncorhynchus mykiss. Ecotoxicol Environ Saf., 208: 111394. Search in Google Scholar

Ellis A.i. (1990). Lysozyme assays. Techniques in Fish Immunology., 1: 101-103. Search in Google Scholar

FAO (2020). National Aquaculture Sector Overview. Egypt. National Aquaculture Sector Overview Fact Sheets. Text by Salem A.M., In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 16 November (2010). [Cited 11 May 2020]. Retrieved from http://www.fao.org/fishery/countrysector/naso_egypt/en. Search in Google Scholar

Gao B., Chi L., Tu P., Bian X., Thomas J., Ru H., Lu K., (2018). The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system. Toxicol Lett., 283: 52-57. Search in Google Scholar

Gao D., Zhu G., Gao Z., Liu Z., Wang L., Guo W. (2011). Antioxidative and hypolipidemic effects of lactic acid bacteria from pickled Chinese cabbage. J Med Plant Res., 5: 1439-1446. Search in Google Scholar

Ghafarifarsani H., Rashidian G., Bagheri T., Hoseinifar S. H., Van Doan H. (2021a). Study on growth enhancement and the protective effects of dietary prebiotic inulin on immunity responses of rainbow trout (Oncorhynchus mykiss) fry infected with Aeromonas hydrophila. Ann. Anim. Sci., 21: 543-559.10.2478/aoas-2020-0074 Search in Google Scholar

Ghafarifarsani H., Hoseinifar S. H., Talebi M., Yousefi M., Van Doan H., Rufchaei R., Paolucci M. (2021b). Combined and singular effects of ethanolic extract of persian shallot (Allium hirtifolium Boiss) and synbiotic Biomin® IMBO on growth performance, serum-and mucus-immune parameters and antioxidant defense in Zebrafish (Danio rerio). Animals., 11: 2995.10.3390/ani11102995853282234680014 Search in Google Scholar

Ghafarifarsani H., Imani A., Niewold T. A., Pietsch-Schmied C., Moghanlou K. S. (2021c). Synergistic toxicity of dietary aflatoxin B1 (AFB1) and zearalenone (ZEN) in rainbow trout (Oncorhynchus mykiss) is attenuated by anabolic effects. Aquaculture., 541, 736793.10.1016/j.aquaculture.2021.736793 Search in Google Scholar

Ghafarifarsani H., Kachuei R., Imani A. (2021d). Dietary supplementation of garden thyme essential oil ameliorated the deteriorative effects of aflatoxin B1 on growth performance and intestinal inflammatory status of rainbow trout (Oncorhynchus mykiss). Aquaculture., 531, 735928.10.1016/j.aquaculture.2020.735928 Search in Google Scholar

Hajirezaee S., Mohammadi G., Naserabad S.S. (2020). The protective effects of vitamin C on common carp (Cyprinus carpio) exposed to titanium oxide nanoparticles (TiO2-NPs). Aquaculture., 518: 734734. Search in Google Scholar

Hedayati S.A., Sheikh Veisi R., Hosseini Shekarabi S.P., Shahbazi Naserabad S., Bagheri D., Ghafarifarsani H. (2021). Effect of Dietary Lactobacillus casei on Physiometabolic Responses and Liver Histopathology in Common Carp (Cyprinus carpio) After Exposure to Iron Oxide Nanoparticles. Biol Trace Elem Res., 30:1-9. Search in Google Scholar

Hedayati S. A. A., Ghafari Farsani H., Shahbazi Naserabad S., Gerami M. H. (2015). Acute toxicity and behavioral changes associated with diazinon in Rutilus rutilus caspicus and Hypophthalmicthys molitrix. Iranian J. Toxi., 9: 1354-1359. Search in Google Scholar

Huculeci R., Dinu D., Staicu A.C., Munteanu M.C., Costache M., Dinischiotu A. (2009). Malathion-induced alteration of the antioxidant defence system in kidney, gill, and intestine of Carassius auratus gibelio. Environ Toxicol., 24: 523-530. Search in Google Scholar

Kamaladevi A., Ganguli A., Kumar M., Balamurugan K. (2013). Lactobacillus casei protects malathion induced oxidative stress and macromolecular changes in Caenorhabditis elegans. Pestic Biochem Physiol., 105: 213-223. Search in Google Scholar

Karmakar S., Patra K., Jana S., Mandal D.P., Bhattacharjee S. (2016). Exposure to environmentally relevant concentrations of malathion induces significant cellular, biochemical and histological alterations in Labeo rohita. Pestic Biochem Physiol., 126: 49-57. Search in Google Scholar

Khabazi M., Harsij M., Hedayati S. A. A., Gerami M. H., GhafariI-Farsani H. (2015). Histopathology of rainbow trout gills after exposure to copper. Iran. J. Ichthyol., 1(3), 191-196. Search in Google Scholar

Khodadadi M., Abbasi N., Adorian T. J., Farsani H. G., Hedayati A., Hoseini S. M. (2018). Growth performance, survival, body composition, hematological parameters, intestinal histomorphology, and digestive enzymes’ activity in juvenile rainbow trout (Oncorhynchus mykiss) fed dietary Immunogen®. J Appl Aquac., 30: 174-186. Search in Google Scholar

Kong Y., Li M., Li R., Shan X., Wang G. (2020a). Evaluation of cholesterol lowering property and antibacterial activity of two potential lactic acid bacteria isolated from the intestine of snakehead fish (Channa argus). Aquac Rep., 17: 100342.10.1016/j.aqrep.2020.100342 Search in Google Scholar

Kong Y., Li M., Tian J., Zhao L., Kang Y., Zhang L., Wang G., Shan X. (2020b). Effects of recombinant Lactobacillus casei on growth performance, immune response and disease resistance in crucian carp, Carassius auratus. Fish Shellfish Immunol., 99: 73-85.10.1016/j.fsi.2020.02.00832032762 Search in Google Scholar

Lackner R. (1998). “Oxidative stress” in fish by environmental pollutants, in: Braunbeck, T., Hinton, D.E., Streit, B. (Eds.), Fish Ecotoxicology. Birkhäuser Basel, Basel, pp. 203-224. Search in Google Scholar

Lee J.-W., Choi H., Hwang U.-K., Kang J.-C., Kang Y.J., Kim K.I., Kim J.-H. (2019). Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environ Toxicol Pharmacol., 68: 101-108. Search in Google Scholar

Ma J., Zhu J., Wang W., Ruan P., Rajeshkumar S., Li X. (2019). Biochemical and molecular impacts of glyphosate-based herbicide on the gills of common carp. Environmental Pollution., 252: 1288-1300. Search in Google Scholar

Magnadóttir B. (2006). Innate immunity of fish (overview). Fish Shellfish Immunol., 20: 137-151. Search in Google Scholar

Mani A., Ebrahimi E. (2021). Equally weighted multivariate optimization of feeding rate for sub- yearling great sturgeon (Huso huso) using desirability function model. J World Aquac Soc., https://doi.org/10.1111/jwas.12857.10.1111/jwas.12857 Search in Google Scholar

Marklund S., Marklund G. (1974). Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem., 47: 469-474. Search in Google Scholar

Mohammadi G, Karimi AA, Hafezieh M, Dawood MA, Abo-Al-Ela HG (2022). Pistachio hull polysaccharide protects Nile tilapia against LPS-induced excessive inflammatory responses and oxidative stress, possibly via TLR2 and Nrf2 signaling pathways. Fish Shellfish Immunol., 121: 276-284. Search in Google Scholar

Mohammadi G., Hafezieh M., Karimi A., Azra M.N., Van Doan H., Tapingkae W., Abdelrahman H.A., Dawood M.A.O. (2021a). The synergistic effects of plant polysaccharide and Pediococcus acidilactici as a synbiotic additive on growth, antioxidant status, immune response, and resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. Fish Shellfish Immunol., 120:304-13.10.1016/j.fsi.2021.11.02834838702 Search in Google Scholar

Mohammadi G., Rafiee G., Abdelrahman H.A. (2020a). Effects of dietary Lactobacillus plantarum (KC426951) in biofloc and stagnant-renewal culture systems on growth performance, mucosal parameters, and serum innate responses of Nile tilapia Oreochromis niloticus. Fish Physiol Biochem., 46: 1167-1181.10.1007/s10695-020-00777-w32133574 Search in Google Scholar

Mohammadi G., Rafiee G., El Basuini M.F., Van Doan H., Ahmed H.A., Dawood M.A.O., Abdel-Latif H.M.R. (2020b). Oregano (Origanum vulgare), St John’s-wort (Hypericum perforatum), and lemon balm (Melissa officinalis) extracts improved the growth rate, antioxidative, and immunological responses in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquac Rep., 18: 100445.10.1016/j.aqrep.2020.100445 Search in Google Scholar

Mohammadi G., Rafiee G., Tavabe K.R., Abdel-Latif H.M.R., Dawood M.A.O. (2021b). The enrichment of diet with beneficial bacteria (single- or multi- strain) in biofloc system enhanced the water quality, growth performance, immune responses, and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture., 539: 736640.10.1016/j.aquaculture.2021.736640 Search in Google Scholar

Mohammadian T., Jangaran-Nejad A., Mesbah M., Shirali T., Malekpouri P., Tabandeh M.-R. (2020). Effect of Lactobacillus casei on Innate Immunity Responses and Aeromonas hydrophila Resistance in Shabot, Tor grypus. Probiotics Antimicrob Proteins., 12: 224-235. Search in Google Scholar

Mohammadiazarm H., Maniat M. (2021). Lacticaseibacillus casei in Diet of Juvenile Convict Cichlid Fish (Amatitlania nigrofasciata): Evaluating Growth Performance, Digestive Enzyme Activities, Immune Responses, and Stress Resistance. Probiotics Antimicrob Proteins., 13: 647-654. Search in Google Scholar

Mugwanya M., Dawood M.A.O., Kimera F., Sewilam H. (2021). Updating the Role of Probiotics, Prebiotics, and Synbiotics for Tilapia Aquaculture as Leading Candidates for Food Sustainability: a Review. Probiotics Antimicrob Proteins., 2:1-28. Search in Google Scholar

Olakkaran S., Kizhakke Purayil A., Antony A., Mallikarjunaiah S., Hunasanahally P. G. (2020). Oxidative stress-mediated genotoxicity of malathion in human lymphocytes. Mutat Res Genet Toxicol Environ Mutagen., 849: 503138. Search in Google Scholar

Ortiz-Delgado J.B., Funes V., Albendín G., Scala E., Sarasquete C. (2021). Toxicity of malathion during Senegalese sole, Solea senegalensis larval development and metamorphosis: Histopathological disorders and effects on type B esterases and CYP1A enzymatic systems. Environ Toxicol., 36: 1894-1910. Search in Google Scholar

Oyeniran D.O., Sogbanmu T.O., Adesalu T.A. (2021). Antibiotics, algal evaluations and subacute effects of abattoir wastewater on liver function enzymes, genetic and haematologic biomarkers in the freshwater fish, Clarias gariepinus. Ecotoxicol Environ Saf., 212: 111982. Search in Google Scholar

Poorbagher H., Ghaffari Farsani H., Farahmand H. (2018). A method to quantify genotoxicity of malathion in rainbow trout using the weighted averaging. Toxicol Mech Methods., 28: 607-614. Search in Google Scholar

Qu R., Feng, M. Wang X., Qin L., Wang C., Wang Z., Wang L. (2014). Metal accumulation and oxidative stress biomarkers in liver of freshwater fish Carassius auratus following in vivo exposure to waterborne zinc under different pH values. Aquat Toxicol., 150: 9-16. Search in Google Scholar

Rahbar M., Sattari M., Alaf Noverian H., Ahmadnezhad M., Khara H., Safari R. (2020). Biochemical and histopathological alterations in Persian sturgeon, Acipenser persicus exposed to malathion. Toxin Rev., 1-13. Search in Google Scholar

Romano N. (2021). Probiotics, prebiotics, biofloc systems, and other biocontrol regimens in fish and shellfish aquaculture, in: Kibenge, F.S.B., Baldisserotto, B., Chong, R.S.-M. (Eds.), Aquaculture Pharmacology. Academic Press, pp. 219-242.10.1016/B978-0-12-821339-1.00003-9 Search in Google Scholar

Romano N., Renukdas N., Fischer H., Shrivastava J., Baruah K., Egnew N., Sinha A.K. (2020). Differential modulation of oxidative stress, antioxidant defense, histomorphology, ion-regulation and growth marker gene expression in goldfish (Carassius auratus) following exposure to different dose of virgin microplastics. Comp Biochem Physiol C Toxicol Pharmacol., 238: 108862. Search in Google Scholar

Ross N.W., Firth K.J., Wang A., Burka J.F., Johnson S.C. (2000). Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis Aquat Organ., 41: 43-51. Search in Google Scholar

Rotllant J., Tort L. (1997). Cortisol and glucose responses after acute stress by net handling in the sparid red porgy previously subjected to crowding stress. J Fish Biol., 51: 21-28. Search in Google Scholar

Sadat Hoseini Madani N., Adorian T. J., Ghafari Farsani H., Hoseinifar S. H. (2018). The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. Aquac Res., 49: 1926-1933. Search in Google Scholar

Saide J.A.O., Gilliland S.E. (2005). Antioxidative Activity of Lactobacilli Measured by Oxygen Radical Absorbance Capacity. J Dairy Sci., 88: 1352-1357. Search in Google Scholar

Shahbazi Naserabad S., Mirvaghefi A., Gerami M.H., Ghafari Farsani H. (2015). Acute toxicity and behavioral changes of the gold fish (Carassius auratus) exposed to malathion and hinosan. Iranian J. Toxi., 8: 1203-1208. Search in Google Scholar

Siddik M.A.B., Foysal M.J., Fotedar R., Francis D.S., Gupta S.K. (2022). Probiotic yeast Saccharomyces cerevisiae coupled with Lactobacillus casei modulates physiological performance and promotes gut microbiota in juvenile barramundi, Lates calcarifer. Aquaculture., 546: 737346. Search in Google Scholar

Silva de Souza S., Machado R.N., Custódio da Costa J., Campos D.F., Sebrenski da Silva G., Fonseca de Almeida-Val V.M. (2020). Severe damages caused by Malathion exposure in Colossoma macropomum. Ecotoxicol Environ Saf., 205: 111340. Search in Google Scholar

Siwicki, A. Anderson D. (1993). An easy spectrophotometric assay for determining total protein and immunoglobulin levels in fish sera: correlation to fish health. Tech Fish Immunol., 3: 23-30. Search in Google Scholar

Souza S.S.d., Castro J.d.S., Campos D.F., Pereira R.S., Bataglion G.A., Silva G.S.d., Almeida-Val V.M.F.d. (2021). Temporal exposure to malathion: Biochemical changes in the Amazonian fish tambaqui, Colossoma macropomum. Aquat Toxicol., 241: 105997. Search in Google Scholar

Ullah S., Li Z., Hasan Z., Khan S.U., Fahad S. (2018). Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. Ecotoxicol Environ Saf., 161: 270-280. Search in Google Scholar

Üner N., Oruç E.Ö., Sevgiler Y., Şahin N., Durmaz H., Usta D. (2006). Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environ Toxicol Pharmacol., 21: 241-245. Search in Google Scholar

Vali S., Mohammadi G., Tavabe K.R., Moghadas F., Naserabad S.S. (2020). The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicol Environ Saf., 194: 110353. Search in Google Scholar

Wang J., Zhu Z., Tian S., Fu H., Leng X., Chen L. (2021). Dietary Lactobacillus casei K17 Improves Lipid Metabolism, Antioxidant Response, and Fillet Quality of Micropterus salmoides. Animals., 11: 2564. Search in Google Scholar

Wendelaar Bonga S.E. (1997). The stress response in fish. Physiological Reviews., 77: 591-625. Search in Google Scholar

Whyte S.K. (2007). The innate immune response of finfish – A review of current knowledge. Fish Shellfish Immunol., 23: 1127-1151. Search in Google Scholar

Xu Z., Parra D., Gómez D., Salinas I., Zhang Y.-A., Von Gersdorff Jørgensen L., Heinecke R.D., Buchmann K., LaPatra S., Sunyer J.O. (2013). Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc. Natl. Acad. Sci., 110: 13097. Search in Google Scholar

Yano T. (1992). Assays of hemolytic complement activity. Techniques in Fish Immunology. Fair Haven, NJ: SOS Publications, 131-141. Search in Google Scholar

Yousefi M., Farsani M. N., Ghafarifarsani H., Hoseinifar S. H., Van Doan H. (2021). The effects of dietary supplementation of mistletoe (Viscum album) extract on the growth performance, antioxidant, and innate, immune responses of rainbow trout (Oncorhynchus mykiss). Aquaculture., 536, 736385.10.1016/j.aquaculture.2021.736385 Search in Google Scholar

Yousefi M., Ghafarifarsani H., Hoseini S. M., Hoseinifar S. H., Abtahi B., Vatnikov Y. A., Van Doan H. (2022). Effects of dietary thyme essential oil and prebiotic administration on rainbow trout (Oncorhynchus mykiss) welfare and performance. Fish Shellfish Immunol., 120: 737-744. Search in Google Scholar

Zhai Q., Wang G., Zhao J., Liu X., Tian F., Zhang H., Chen W. (2013). Protective Effects of Lactobacillus plantarum CCFM8610 against Acute Cadmium Toxicity in Mice. Appl Environ Microbiol., 79: 1508-1515. Search in Google Scholar

Zhang H., Wang H., Hu K., Jiao L., Zhao M., Yang X., Xia L. (2019). Effect of Dietary Supplementation of Lactobacillus Casei YYL3 and L. Plantarum YYL5 on Growth, Immune Response and Intestinal Microbiota in Channel Catfish., Animals 9: 1005. Search in Google Scholar

Zheng T., Jia R., Cao L., Du J., Gu Z., He Q., Xu P., Yin G. (2021). Effects of chronic glyphosate exposure on antioxdative status, metabolism and immune response in tilapia (GIFT, Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol., 239: 108878. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo