1. bookVolume 22 (2022): Issue 2 (April 2022)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
Open Access

Genome-wise engineering of ruminant nutrition – nutrigenomics: applications, challenges, and future perspectives – A review

Published Online: 12 May 2022
Volume & Issue: Volume 22 (2022) - Issue 2 (April 2022)
Page range: 511 - 521
Received: 25 Jan 2021
Accepted: 15 Jul 2021
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Asmelash B., Mahlet D., Brhane H. (2018). Livestock nutrigenomics applications and prospects. J. Vet. Sci. Technol., 9: 1–4.Search in Google Scholar

Auffret M.D., Dewhurst R.J., Duthie C.-A., Rooke J.A., John Wallace R., Freeman T.C., Stewart R., Watson M., Roehe R. (2017). The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. Microbiome, 5: 159.Search in Google Scholar

Banerjee G., Pal R., Ray A.K. (2015). Applications of nutrigenomics in animal sectors: A Review. Asian J. Anim. Vet. Adv., 10: 489–499.Search in Google Scholar

Begum G., Stevens A., Smith E.B., Connor K., Challis J.R.G., Bloomfield F., White A. (2012). Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. FASEB J., 26: 1694–1703.Search in Google Scholar

Behrem S. (2021). Estimation of genetic parameters for pre-weaning growth traits in Central Anatolian Merino sheep. Small Rumin. Res., 106319.10.1016/j.smallrumres.2021.106319Search in Google Scholar

Berry D.P., Bermingham M.L., Good M., More S.J. (2011). Genetics of animal health and disease in cattle. Ir. Vet. J., 64: 5.Search in Google Scholar

Bilby T.R., Guzeloglu A., MacLaren L.A., Staples C.R., Thatcher W.W. (2006). Pregnancy, bovine somatotropin, dietary n-3 fatty acids in lactating dairy cows: II. Endometrial gene expression related to maintenance of pregnancy. J. Dairy Sci., 89: 3375–3385.Search in Google Scholar

Bionaz M. (2014). Nutrigenomics approaches to fine-tune metabolism and milk production: is this the future of ruminant nutrition? Adv. Dairy Res., 2: 1–2.Search in Google Scholar

Bionaz M., Osorio J.S., Loor J.J. (2015). Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques. J. Anim. Sci., doi:10.2527/jas2015-9192.Search in Google Scholar

Cedervall P.E., Dey M., Pearson A.R., Ragsdale S.W., Wilmot C.M. (2010). Structural insight into methyl-coenzyme M reductase chemistry using coenzyme B analogues. Biochemistry, 49: 7683–7693.Search in Google Scholar

da Costa A.S.H., Pires V.M.R., Fontes C.M.G.A., Mestre Prates J.A. (2013). Expression of genes controlling fat deposition in two genetically diverse beef cattle breeds fed high or low silage diets. BMC Vet. Res., 9: doi:10.1186/1746-6148-9-118.10.1186/1746-6148-9-118369174623767408Search in Google Scholar

Dupuis L., Schuermann Y., Cohen T., Siddappa D., Kalaiselvanraja A., Pansera M., Bordignon V., Duggavathi R. (2014). Role of leptin receptors in granulosa cells during ovulation. Reproduction, 147: 221–229.Search in Google Scholar

Ebrahimi M., Rajion M.A., Goh Y.M., Sazili A.Q., Schonewille J.T. (2013). Effect of linseed oil dietary supplementation on fatty acid composition and gene expression in adipose tissue of growing goats. Biomed. Res. Int., doi:https://doi.org/10.1155/2013/194625.10.1155/2013/194625358124923484090Search in Google Scholar

Ebrahimi M., Rajion M.A., Goh Y.M. (2014). Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients, 6: 3913–3928.Search in Google Scholar

Elgendy R., Giantin M., Castellani F., Grotta L., Palazzo F., Dacasto M., Martino G. (2016). Transcriptomic signature of high dietary organic selenium supplementation in sheep: A nutrigenomic insight using a custom microarray platform and gene set enrichment analysis. J. Anim. Sci., 94: 3169–3184.Search in Google Scholar

Elgendy R., Palazzo F., Castellani F., Giantin M., Grotta L., Cerretani L., Dacasto M., Martino G. (2017). Transcriptome profiling and functional analysis of sheep fed with high zinc-supplemented diet: A nutrigenomic approach. Anim. Feed Sci. Technol., 234: 195–204.Search in Google Scholar

Elolimy A.A., Moisá S.J., Brennan K.M., Smith A.C., Graugnard D., Shike D.W., Loor J.J. (2018). Skeletal muscle and liver gene expression profiles in finishing steers supplemented with Amaize. Anim. Sci. J., 89: 1107–1119.Search in Google Scholar

FAO (2013). Greenhouse gas emissions from ruminant supply chains.Search in Google Scholar

Gastelen S. van, Visker M.H.P.W., Edwards J.E., Antunes-Fernandes E.C., Hettinga K.A., Alferink S.J.J., Hendriks W.H., Bovenhuis H., Smidt H., Dijkstra J. (2017). Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. J. Dairy Sci., 100: 8939–8957.Search in Google Scholar

Ghormade V., Khare A., Baghel R.P.S. (2011). Nutrigenomics and its applications in animal science. Vet. Res. Forum, 2: 147–155.Search in Google Scholar

Golder H.M., Thomson J.M., Denman S.E., McSweeney C.S., Lean I.J. (2018). Genetic markers are associated with the ruminal microbiome and metabolome in grain and sugar challenged dairy heifers. Front. Genet., 9: 1–10.Search in Google Scholar

Haas Y. de, Garnsworthy P.C., Kuhla B., Negussie E., Pszczola M., Wall E., Lassen J. (2016). Genetic control of greenhouse gas emissions. Adv. Anim. Biosci., 7: 196–199.Search in Google Scholar

Hartog L.A. den, Sijtsma S.R. (2013). Challenges and opportunities in animal feed and nutrition. Anim. Nutr., https://edepot.wur.nl/306279Search in Google Scholar

Harvatine K.J., Bauman D.E. (2006). SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr., 136: 2468–2474.Search in Google Scholar

Hasan M.S., Feugang J.M., Liao S.F. (2019). A nutrigenomics approach using RNA Sequencing technology to study nutrient – gene. Curr. Dev. Nutr., 1–12.Search in Google Scholar

Horikawa A., Ogasawara H., Okada K., Kobayashi M., Muroya S., Hojito M. (2015). Grazing-induced changes in muscle microRNA-206 and -208b expression in association with myogenic gene expression in cattle. Anim. Sci. J., 86: 952–960.Search in Google Scholar

Ibeagha-Awemu E.M., Zhao X. (2015). Epigenetic marks: Regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front. Genet., 6: 1–17.Search in Google Scholar

Jacometo C.B., Zhou Z., Luchini D., Trevisi E., Corrêa M.N., Loor J.J. (2016). Maternal rumen-protected methionine supplementation and its effect on blood and liver biomarkers of energy metabolism, inflammation, and oxidative stress in neonatal Holstein calves. J. Dairy Sci., 99: 6753–6763.Search in Google Scholar

Johnsen L., Kongsted A.H., Nielsen M.O. (2013). Prenatal undernutrition and postnatal overnutrition alter thyroid hormone axis function in sheep. J. Endocrinol., 216: 389–402.Search in Google Scholar

Kadzere C. (2018). Environmentally smart animal agriculture and integrated advisory services ameliorate the negative effects of climate change on production. S. Afr. J. Anim. Sci., 48: 842–857.Search in Google Scholar

Landau S., Bor A., Leibovich H., Zoref Z., Nitsan Z., Madar Z. (1995). The effect of ruminal starch degradability in the diet of Booroola crossbred ewes on induced ovulation rate and prolificacy. Anim. Reprod. Sci., 38: 97–108.Search in Google Scholar

Lassen J., Løvendahl P. (2016). Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. J. Dairy Sci., 99: 1959–1967.Search in Google Scholar

Leroux C., Bernard L., Faulconnier Y., Rouel J., De La Foye A., Domagalski J., Chilliard Y. (2016). Bovine mammary nutrigenomics and changes in the milk composition due to rapeseed or sunflower oil supplementation of high-forage or high-concentrate diets. J. Nutrigenet. Nutrigenomics, 9: 65–82.Search in Google Scholar

Leroy J.L.M.R., Sturmey R.G., Van Hoeck V., De Bie J., Mckeegan P.J., Bols P.E.J. (2014). Dietary fat supplementation and the consequences for oocyte and embryo quality: Hype or significant benefit for dairy cow reproduction? Reprod. Domest. Anim., 49: 353–361.Search in Google Scholar

Liu X., Usman T., Wang Y., Wang Z., Xu X., Wu M., Zhang Y., Zhang X., Li Q., Liu L., Shi W., Qin C., Geng F., Wang C., Tan R., Huang X., Liu A., Wu H., Tan S., Yu Y. (2015). Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits. Asian-Australas. J. Anim. Sci., 28: 467–475.Search in Google Scholar

Liu X.S., Wu H., Ji X., Stelzer Y., Wu X., Czauderna S., Shu J., Dadon D., Young R.A., Jaenisch R. (2016). Editing DNA methylation in the mammalian genome. Cell, 167: 233–247.Search in Google Scholar

Liu D., Zhao L., Wang Z., Zhou X., Fan X., Li Y., Xu J., Hu S., Niu M., Song X., Li Y., Zuo L., Lei C., Zhang M., Tang G., Huang M., Zhang N., Duan L., Lv H., Zhang M., Li J., Xu L., Kong F., Feng R., Jiang Y. (2019). EWASdb: Epigenome-wide association study database. Nucleic Acids Res., 47: D989–D993.Search in Google Scholar

Maeder M.L., Gersbach C.A. (2016). Genome-editing technologies for gene and cell therapy. Mol. Ther., 24: 430–446.Search in Google Scholar

Manzanilla-Pech C.I.V., De Haas Y., Hayes B.J., Veerkamp R.F., Khansefid M., Donoghue K.A., Arthur P.F., Pryce J.E. (2016). Genomewide association study of methane emissions in Angus beef cattle with validation in dairy cattle. J. Anim. Sci., 94: 4151–4166.Search in Google Scholar

Mariman E.C.M. (2006). Nutrigenomics and nutrigenetics: the ‘omics’ revolution in nutritional science. Biotechnol. Appl. Biochem., 44: 119–128.Search in Google Scholar

Masotti A., Da Sacco L., Bottazzo G.F., Alisi A. (2010). Microarray technology: a promising tool in nutrigenomics. Crit. Rev. Food Sci. Nutr., 50: 693–698.Search in Google Scholar

Mathers J.C. (2017). Nutrigenomics in the modern era. Proc. Nutr. Soc., 76: 265–275.Search in Google Scholar

McDonald J.I., Celik H., Rois L.E., Fishberger G., Fowler T., Rees R., Kramer A., Martens A., Edwardsand J.R., Challen G.A. (2016). Reprogrammable CRISPR/Cas9-based system for inducing sitespecific DNA methylation. Biol. Open, 5: 866–874.Search in Google Scholar

Mondal M., Ghosh M.K. (2018). Application of nutrigenomics for enhancement of body growth in ruminants. Res. Rev. J. Vet. Sci. Technol., 5: 1–6.Search in Google Scholar

Montes F., Meinen R., Dell C., Rotz A., Hristov A.N., Oh J., Waghorn G., Gerber P.J., Henderson B., Makkar H.P.S., Dijkstra J. (2013). Special topics – Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J. Anim. Sci., 91: 5070–5094.Search in Google Scholar

Müller M., Kersten S. (2003). Nutrigenomics: goals and strategies. Nat. Rev. Genet., 4: 315–322.Search in Google Scholar

Murdoch B.M., Murdoch G.K., Greenwood S., McKay S. (2016). Nutritional influence on epigenetic marks and effect on livestock production. Front. Genet., 7: 1–10.Search in Google Scholar

Neeha V.S., Kinth P. (2013). Nutrigenomics research: A review. J. Food Sci. Technol., 50: 415–428. doi:10.1007/s13197-012-0775-z.10.1007/s13197-012-0775-z360256724425937Search in Google Scholar

Novak T.E., Rodriguez-Zas S.L., Southey B.R., Starkey J.D., Stockler R.M., Alfaro G.F., Moisá S.J. (2019). Jersey steer ruminal papillae histology and nutrigenomics with diet changes. J. Anim. Physiol. Anim. Nutr. (Berl.), 103: 1694–1707.Search in Google Scholar

Nowacka-Woszuk J. (2019). Nutrigenomics in livestock-recent advances. J. Appl. Genet., doi:10.1007/s13353-019-00522-x.10.1007/s13353-019-00522-x696898031673964Search in Google Scholar

Ommen B. van, Keijer J., Kleemann R., Elliott R., Christian A.D., McArdle H., Gibney M., Muller M. (2008). The challenges for molecular nutrition research 2: quantification of the nutritional phenotype. Genes Nutr., 51–59.Search in Google Scholar

Opio C., Gerber P., Mottet A., Falcucci A., Tempio G., MacLeod M., Vellinga T., Henderson B., Steinfeld H. (2013). Greenhouse gas emissions from ruminant supply chains – A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome.Search in Google Scholar

Osorio J.S., Moisa S.J. (2019). Gene regulation in ruminants: A nutritional perspective. Gene expression and control: Fumiaki Uchiumi, IntechOpen, doi:10.5772/intechopen.82193.10.5772/intechopen.82193Search in Google Scholar

Osorio J.S., Trevisi E., Ballou M.A., Bertoni G., Drackley J.K., Loor J.J. (2013). Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal holstein heifer calves. J. Dairy Sci., 96: 3573–3587.Search in Google Scholar

Osorio J.S., Vailati-Riboni M., Palladino A., Luo J. (2017). Application of nutrigenomics in small ruminants: Lactation, growth, and beyond. Small Rumin. Res., 154: 29.Search in Google Scholar

Peñagaricano F., Souza A.H., Carvalho P.D., Driver A.M., Gambra R., Kropp J., Hackbart K. S., Luchini D., Shaver R.D., Wiltbank M.C., Khatib H. (2013). Effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. PLoS One, 8: doi:10.1371/journal.pone.0072302.10.1371/journal.pone.0072302374912223991086Search in Google Scholar

Pinares-Patiño C.S., Hickey S.M., Young E.A., Dodds K.G., MacLean S., Molano G., Sandoval E., Kjestrup H., Harland R., Hunt C., Pickering N.K., McEwan J.C. (2013). Heritability estimates of methane emissions from sheep. Animal, 7: 316–321.Search in Google Scholar

Pisani L.F., Antonini S., Pocar P., Ferrari S., Brevini T.A.L., Rhind S.M., Gandolfi F. (2008). Effects of pre-mating nutrition on mRNA levels of developmentally relevant genes in sheep oocytes and granulosa cells. Reproduction, 303–312.10.1530/REP-07-039418515315Search in Google Scholar

Pszczola M., Strabel T., Mucha S., Sell-Kubiak E. (2018). Genomewide association identifies methane production level relation to genetic control of digestive tract development in dairy cows. Sci. Rep., 8: 1–11.Search in Google Scholar

Qu Y.H., Jian L.Y., Ce L., Ma Y., Xu C.C., Gao Y.F., Machaty Z., Luo H.L. (2019). Identification of candidate genes in regulation of spermatogenesis in sheep testis following dietary vitamin E supplementation. Anim. Reprod. Sci., 205: 52–61.Search in Google Scholar

Remely M., Stefanska B., Lovrecic L., Magnet U., Haslberger A.G. (2015). Nutriepigenomics: The role of nutrition in epigenetic control of human diseases. Curr. Opin. Clin. Nutr. Metab. Care, 18: 328–333.Search in Google Scholar

Rolf M.M., Decker J.E., Mckay S.D., Tizioto P.C., Branham K.A., Whitacre L.K., Hoff J.L., Regitano L.C.A., Taylor J.F. (2014). Genomics in the United States beef industry. Livest. Sci., 166: 84–93.Search in Google Scholar

Sales N.M.R., Pelegrini P.B., Goersch M.C. (2014). Nutrigenomics: Definitions and advances of this new science. J. Nutr. Metab., doi:10.1155/2014/20275910.1155/2014/202759398486024795820Search in Google Scholar

Santos J.E.P., Bilby T.R., Thatcher W.W., Staples C.R., Silvestre F.T. (2008). Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod. Domest. Anim., 43: 23–30.Search in Google Scholar

Schären M., Frahm J., Kersten S., Meyer U., Hummel J., Breves G., Dänicke S. (2018). Interrelations between the rumen microbiota and production, behavioral, rumen fermentation, metabolic, and immunological attributes of dairy cows. J. Dairy Sci., 101: 4615–4637.Search in Google Scholar

Schmidt S., Hommel A., Gawlik V., Augustin R., Junicke N., Florian S., Richter M., Walther D.J., Montag D., Joost H.G., Schürmann A. (2009). Essential role of glucose transporter GLUT3 for post-implantation embryonic development. J. Endocrinol., 200: 23–33.Search in Google Scholar

Shi W., Moon C.D., Leahy S.C., Kang D., Froula J., Kittelmann S., Fan C., Deutsch S., Gagic D., Seedorf H., Kelly W.J., Atua R., Sang C., Soni P., Li D., Pinares-Patiño C.S., McEwan J.C., Janssen P.H., Chen F., Visel A., Wang Z., Attwood G.T., Rubin E.M. (2014). Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res., 24: 1517–1525.Search in Google Scholar

Simopoulos A.P., Milner J.A. (2010). Personalized nutrition: translating nutrigenetic/nutrigenomic research into dietary guidelines. Karger Publishers. doi:10.1159/isbn.978-3-8055-9428-810.1159/isbn.978-3-8055-9428-820437670Search in Google Scholar

Sinclair K.D., Allegrucci C., Singh R., Gardner D.S., Sebastian S., Bispham J., Thurston A., Huntley J.F., Rees W.D., Maloney C.A., Lea R.G., Craigon J., McEvoy T.G., Young L. E. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl. Acad. Sci. USA, 104: 19351–19356.Search in Google Scholar

Sohel M.M.H., Akyuz B., Konca Y., Arslan K., Gurbulak K., Abay M., Kaliber M., Cinar M. U. (2020). Differential protein input in the maternal diet alters the skeletal muscle transcriptome in fetal sheep. Mamm. Genome, 31: 309–324.Search in Google Scholar

Thatcher W.W., Bilby T.R., Bartolome J.A., Silvestre F., Staples C.R., Santos J.E.P. (2006). Strategies for improving fertility in the modern dairy cow. Theriogenology, 65: 30–44.Search in Google Scholar

Turunen T.A., Väänänen M.A., Ylä-Herttuala S. (2018). Epigenomics. Encyclopedia of cardiovascular research and medicine. pp. 258–265. doi:10.1016/B978-0-12-809657-4.99575-910.1016/B978-0-12-809657-4.99575-9Search in Google Scholar

Valour D., Hue I., Degrelle S.A., Déjean S., Marot G., Dubois O., Germain G., Humblot P., Ponter A., Charpigny G., Grimard B. (2013). Pre- and post-partum mild underfeeding influences gene expression in the reproductive tract of cyclic dairy cows. Reprod. Domest. Anim., 48: 484–499.Search in Google Scholar

Van den Veyver I. (2002). Genetic effects of methylation diets. Annu. Rev. Nutr., 22: 255–282.Search in Google Scholar

Vojta A., Dobrinic P., Tadic V., Bockor L., Korac P., Julg B., Klasic M., Zoldos V. (2016). Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res., 44: 5615–5628.Search in Google Scholar

Vosman J.J., Jong G. de, Eding H., Knijn H. (2015). Genetic evaluation for ketosis in the Netherlands based on FTIR measurements. Interbull Bull., 49: 1–5.Search in Google Scholar

Wang B., Yang Q., Harris C.L., Nelson M.L., Busboom J.R., Zhu M.J., Du M. (2016). Nutrigenomic regulation of adipose tissue development – role of retinoic acid: A review. Meat Sci., 120: 100–106.Search in Google Scholar

Warnefors M., Eyre-Walker A. (2012). A selection index for gene expression evolution and its application to the divergence between humans and chimpanzees. PLoS One, 7: doi:10.1371/journal. pone.0034935Search in Google Scholar

Wetterstrand K. (2020). DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP).Search in Google Scholar

World Health Organization (2020). One Health. https://www.who.int/news-room/q-a-detail/one-health. Access: 22.01.2021.Search in Google Scholar

Zheng Y. (2015). Epigenetic technological applications. Amsterdam, Academic Press.Search in Google Scholar

Recommended articles from Trend MD