Open Access

The Effect of Adding Molasses in Different Times on Performance of Nile Tilapia (Oreochromis niloticus) Raised in a Low-Salinity Biofloc System


Cite

Adorian T. J., Jamali H., Ghafari Farsani H., Darvishi P., Hasanpour S., Bagheri T., Roozbehfar R. (2019). Effects of probiotic bacteria bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics Antimicrob. Proteins, 11: 248–255.10.1007/s12602-018-9393-zSearch in Google Scholar

Aguilera-Rivera D., Prieto-Davó A., Escalante K., Chávez C., Cuzon G., Gaxiola G. (2014). Probiotic effect of FLOC on Vibrios in the pacific white shrimp Litopenaeus vannamei. Aquaculture, 424: 215–219.10.1016/j.aquaculture.2014.01.008Search in Google Scholar

Ahmad I., Babitha Rani A. M., Verma A. K., Maqsood M. (2017). Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquacult. Int., 25: 1215–1226.10.1007/s10499-016-0108-8Search in Google Scholar

Alves G. F. O., Fernandes A. F. A., Alvarenga E. R., Turra E. M., Sousa A. B., Teixeira E. A. (2017). Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture, 479: 564–570.10.1016/j.aquaculture.2017.06.029Search in Google Scholar

AOAC (2005). Official methods of analysis. Association of Official Analytical Chemists, INC., Arlington, Virginia, USA, p. 245.Search in Google Scholar

APHA (2005). American Water Works Association, Water Pollution Control Association. Standard Methods for the Examination of Water and Wastewater (21st ed.). American Public Health Association, Washington, DC, USA.Search in Google Scholar

Apún-Molina J. P., Santamaría-Miranda A., Luna-González A., Martínez-Díaz S. F., Rojas-Contreras M. (2009). Effect of potential probiotic bacteria on growth and survival of tilapia Oreochromis niloticus L., cultured in the laboratory under high density and suboptimum temperature. Aquac. Res., 40: 887–894.10.1111/j.1365-2109.2009.02172.xSearch in Google Scholar

Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147.10.1016/j.aquaculture.2006.11.025Search in Google Scholar

Avnimelech Y. (2009). Biofloc Technology – A Practical Guide Book. 1st ed. The World Aquaculture Society, Baton Rouge, LA, USA, 182 pp.Search in Google Scholar

Avnimelech Y. (2012). Biofloc Technology – A Practical Guide Book. 2nd ed. The World Aquaculture Society, Baton Rouge, USA, 272 pp.Search in Google Scholar

Avnimelech Y., Kochba M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287: 163–168.10.1016/j.aquaculture.2008.10.009Search in Google Scholar

Bakhshi F., Najdegerami E. H., Manaffar R., Tokmechi A., Farah K. R., Jalali A. S. (2018). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquac. Res., 49: 393–403.10.1111/are.13469Search in Google Scholar

Becerra-Dórame M., Martinez-Porchas M., Martinez-Cordova L. R., Rivas-Vega M. E., Lopez-Elias J. A., Porchas-Cornejo M. A. (2012). Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) intensively pre grown in microbial heterotrophic and autotrophic-based systems. Sci. World J., 723654, 6 pp.10.1100/2012/723654Search in Google Scholar

Bergmeyer H. U., Horder M., Rej R. (1986). International Federation of Clinical Chemistry (IFCC) Scientific Committee. J. Clin. Chem. Clin. Biochem., 24: 497–510.Search in Google Scholar

Bernfeld P. (1955). Amylase. In: Methods in Enzymology, Colowick S.P., Kaplan N.O. (eds.). Academic Press, New York, pp: 149–158.10.1016/0076-6879(55)01021-5Search in Google Scholar

Chen C., Wooster G. A., Bowser P. R. (2004). Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin or copper sulfate. Aquaculture, 239: 421–443.10.1016/j.aquaculture.2004.05.033Search in Google Scholar

Christopher M. A., Caipang H. X., Choo Z. B., Huilin H., Clara M., Lay-Yag J. L. (2015). Small-scale production of biofloc using various carbon sources for the freshwater culture of tilapia, Oreochromis sp. ABAH Bioflux, 7: 103–111.Search in Google Scholar

Colt J. (2006). Water quality requirements for reuse systems. Aquac. Eng., 34: 143–156.10.1016/j.aquaeng.2005.08.011Search in Google Scholar

Coyle S. D., Bright L. A., Wood D. R., Neal R. S., Tidwell J. H. (2011). Performance of Pacific white shrimp, Litopenaeus vannamei, reared in zero-exchange tank systems exposed to different light sources and intensities. J. World Aquacult. Soc., 42: 687–695.10.1111/j.1749-7345.2011.00512.xSearch in Google Scholar

Crab R., Kochva M., Verstraete W., Avnimelech Y. (2009). Bio-flocs technology application in over-wintering of tilapia. Aquac. Eng., 40: 105–112.10.1016/j.aquaeng.2008.12.004Search in Google Scholar

De Schryver P., Sinha A. K., Kunwar P. S., Baruah K., Verstraete W., Boon N., De Boeck G., Bossier P. (2010). Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl. Microbiol. Biotechnol., 86: 1535–1541.10.1007/s00253-009-2414-9Search in Google Scholar

Deng M., Chen J., Gou J., Hou J., Li D., He X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482: 103–110.10.1016/j.aquaculture.2017.09.030Search in Google Scholar

Deutsche Gesellschaft für Klinische Chemie (1972). Empfehlungen der deutschen Gesellschaft für Klinische Chemie. Standardisierung von Methoden zur Bestimmung von Enzymaktivitaten in biologischen flussigkeiten. (Standardizition of methods for measurement of enzymatic activities in biological fluids). Z. Klin. Chem. Klin. Biochem., 10: 182–192.Search in Google Scholar

Durigon E. G., Almeida A. P. G., Jerônimo G. T., Baldisserotto B., Emerencianoa M. G. C. (2019). Digestive enzymes and parasitology of Nile tilapia juveniles raised in brackish biofloc water and fed with different digestible protein and digestible energy levels. Aquaculture, 506: 35–41.10.1016/j.aquaculture.2019.03.022Search in Google Scholar

Durigon E. G., Lazzari R., Uczay J., Lopes D. L. D. A., Jerônimo G. T., Sgnaulin T., Emerenciano M. G. C. (2020). Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquacult. Fish., 5: 42–51.10.1016/j.aaf.2019.07.001Search in Google Scholar

Ekasari J., Crab R., Verstraete W. (2010). Primary nutritional content of bio-flocs cultured with different organic carbon sources and salinity. HAYATI J. Biosci., 17: 125–130.10.4308/hjb.17.3.125Search in Google Scholar

Ekasari J., Rivandi D. R., Firdausi A. P., Surawidjaja E. H., Zairin M., Bossier P., De Schryver P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441: 72–77.10.1016/j.aquaculture.2015.02.019Search in Google Scholar

El-Sayed E. M. (2006). Tilapia Culture. CABI Publishing, Cambridge Massachusetts, USA, 275 p.10.1079/9780851990149.0000Search in Google Scholar

Emerenciano M., Ballester E. L., Cavalli R. O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Res., 43: 447–457.10.1111/j.1365-2109.2011.02848.xSearch in Google Scholar

Emerenciano M. G. C., Martínez-Córdova L. R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water Quality, InTech, London, UK, pp. 91–109.10.5772/66416Search in Google Scholar

Garcia-Carreno F. L., Haard N. F. (1993). Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J. Food Biochem., 17: 97–113.10.1111/j.1745-4514.1993.tb00864.xSearch in Google Scholar

García-Ríos L., Miranda-Baeza A., Coelho-Emerenciano M. G., Huerta-Rábago J. A., Osuna-Amarillas P. (2019). Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture, 502: 26–31.10.1016/j.aquaculture.2018.11.057Search in Google Scholar

Hakim Y., Uni Z., Hulata G., Harpaz S. (2006). Relationship between intestinal brush border enzymatic activity and growth rate in tilapias fed diets containing 30% or 48% protein. Aquaculture, 257: 420–428.10.1016/j.aquaculture.2006.02.034Search in Google Scholar

Hao L., Wang Z., Xing B. (2009). Effect of sub-acute exposure to TiO nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J. Environ. Sci., 21: 1459–1466.10.1016/S1001-0742(08)62440-7Search in Google Scholar

Haridas H., Verma A. K., Rathore G., Prakash C., Banerjee P. (2017). Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res., 48: 4346–4355.10.1111/are.13256Search in Google Scholar

Hu Z., Lee J. W., Chandran K., Kim S., Brotto A. C., Khanal S. K. (2015). Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol., 188: 92–98.10.1016/j.biortech.2015.01.013Search in Google Scholar

Iijima N., Tanaka S., Ota Y. (1998). Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream (Pagrus major). Fish Physiol. Biochem., 18: 59–69.Search in Google Scholar

Jenabi Haghparast R., Moghanlou K. S., Mohseni M., Imani A. (2019). Effect of dietary soybean lecithin on fish performance, hemato-immunological parameters, lipid biochemistry, antioxidant status, digestive enzymes activity and intestinal histomorphometry of pre-spawning Caspian brown trout (Salmo trutta caspius). Fish Shellfish Immunol., 91: 50–57.10.1016/j.fsi.2019.05.022Search in Google Scholar

Ju Z., Forster I., Conquest L., Dominy W. (2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquac. Nutr., 14: 533–543.10.1111/j.1365-2095.2007.00559.xSearch in Google Scholar

Kamrani E., Sharifinia M., Hashemi S. H. (2016). Analyses of fish community structure changes in three subtropical estuaries from the Iranian coastal waters. Mar. Biodivers., 46: 561–577.10.1007/s12526-015-0398-5Search in Google Scholar

Khanjani M. H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850.10.1111/raq.12412Search in Google Scholar

Khanjani M. H., Sajjadi M., Alizadeh M., Sourinejad I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iran. J. Fish. Sci.,15: 1465–1484.Search in Google Scholar

Khanjani M. H., Sajjadi M. M., Alizadeh M., Sourinejad I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquac. Res., 48: 1491–1501.10.1111/are.12985Search in Google Scholar

Khanjani M. H., Alizadeh M., Sharifinia M. (2020 a). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquac. Nutr., 26: 328–337.10.1111/anu.12994Search in Google Scholar

Khanjani M. H., Sharifinia M. Hajirezaee S. (2020 b). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1–16.10.2478/aoas-2020-0036Search in Google Scholar

Khanjani M. H., Alizadeh M., Sharifinia M. (2021 a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquacult. Int., 29: 307–321.10.1007/s10499-020-00627-9Search in Google Scholar

Khanjani M. H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513.Search in Google Scholar

Khatoon H., Banerjee S., Yuan G., Haris N., Ikhwanuddin M., Ambak M., Endutet A. (2016). Biofloc as a potential natural feed for shrimp postlarvae. Int. Biodeterior. Biodegrad., 113: 304–309.10.1016/j.ibiod.2016.04.006Search in Google Scholar

Kumolu-Johnson C. A., Ndimele P. E. (2010). Length-weight relationships and condition factors of twenty-one fish species in Ologe Lagoon, Lagos, Nigeria. Asian J. Agric. Sci., 4: 174–179.Search in Google Scholar

Lima P. C. M., Abreu J. L., Silva A. E. M., Severi W., Galvez A. O., Brito L. O. (2018). Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Span. J. Agric. Res., 16: 612–621.10.5424/sjar/2018164-13222Search in Google Scholar

Lin S., Mai K., Tan B. (2007). Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus×O. aureus. Aquac. Res., 38: 1645–1653.10.1111/j.1365-2109.2007.01825.xSearch in Google Scholar

Liu G., Ye Z., Liu D., Zhao J., Sivaramasamy E., Deng Y., Zhu S. (2018). Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems, Fish Shellfish Immunol., 81: 416–422.10.1016/j.fsi.2018.07.047Search in Google Scholar

Long L., Yang J., Li Y., Guan C., Wu F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448: 135–141.10.1016/j.aquaculture.2015.05.017Search in Google Scholar

Luo G., Wang C., Liu W., Sun D., Li L., Tan H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423: 1–7.10.1016/j.aquaculture.2013.11.023Search in Google Scholar

Márquez A. G., Demessence A., Platero-Prats A. E., Heurtau D., Horcajada P., Serre C., Chang J. S., Férey G., dela Peña-O’ Shea V. A., Boissière C., Grosso D., Sanchez C. (2012). Green microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur. J. Inorg. Chem., 100: 5165–5174.10.1002/ejic.201200710Search in Google Scholar

Martins G. B., da Rosa C. E., Tarouco F. M, Robaldo R. B. (2019). Growth, water quality and oxidative stress of Nile tilapia Oreochromis niloticus (L.) in biofloc technology system at different pH. Aquac. Res., 50: 1030–1039.10.1111/are.13975Search in Google Scholar

Menaga M., Felixb S., Charulatha M., Gopalakannana A., Panigrahic A. (2019). Effect of in-situ and ex-situ biofloc on immune response of Genetically Improved Farmed Tilapia. Fish Shellfish Immunol., 92: 698–705.10.1016/j.fsi.2019.06.031Search in Google Scholar

Minabi K., Sourinejad I., Alizadeh M., Rajabzadeh Ghatrami E., Khanjani M. H. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquacult. Int., 28: 1883–1898.10.1007/s10499-020-00564-7Search in Google Scholar

Mirzakhani N., Ebrahimi E., Jalali S. A. H., Ekasari J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512: 734235.10.1016/j.aquaculture.2019.734235Search in Google Scholar

MOOPAM (1999). Manual of oceanographic observations and pollutant analysis methods. Kuwait, ROPME, 1: 20.Search in Google Scholar

Morado C. N., Araújo F. G., Gomes I. D. (2017). The use of biomarkers for assessing effects of pollutant stress on fish species from a tropical river in Southeastern Brazil. Acta Sci., 39: 431–439.10.4025/actascibiolsci.v39i4.34293Search in Google Scholar

Najdegerami E. H., Bakhshi F., Lakani F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiol. Biochem., 42: 457–465.10.1007/s10695-015-0151-9Search in Google Scholar

Panigrahi A., Saranya C., Sundaram M., Kannan S. V., Das R. R., Kumar R. S., Rajesh P., Otta S. (2018). Carbon: Nitrogen (C: N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol., 81: 329–337.10.1016/j.fsi.2018.07.035Search in Google Scholar

Pérez-Fuentes J. A., Hernández-Vergara M. P., Pérez-Rostro C. I., Fogel I. (2016). C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452: 247–251.10.1016/j.aquaculture.2015.11.010Search in Google Scholar

Pinho S. M., Molinari D., de Mello G. L., Fitzsimmons K. M., Emerenciano M. G. C. (2017). Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol. Eng., 103: 146–153.10.1016/j.ecoleng.2017.03.009Search in Google Scholar

Qi Z., Zhang X. H., Boon N., Bossier P. (2009). Probiotics in aquaculture of China – current state, problems and prospect. Aquaculture, 290: 15–21.10.1016/j.aquaculture.2009.02.012Search in Google Scholar

Ren W., Li L., Dong S., Tian X., Xue Y. (2019). Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. Aquaculture, 498: 123–131.10.1016/j.aquaculture.2018.08.043Search in Google Scholar

Santacruz-Reyes R. A., Chien Y. H. (2012). The potential of Yucca schidigera extract to reduce the ammonia pollution from shrimp farming. Bioresour. Technol., 113: 311–314.10.1016/j.biortech.2012.02.132Search in Google Scholar

Santos J. F., Soares K. L. S., Assis C. R. D., Guerra C. A. M., Lemos D., Carvalho L. B., Bezerra R. S. (2016). Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems. Fish Physiol. Biochem., 42: 1259–1274.10.1007/s10695-016-0215-5Search in Google Scholar

Seixas Filho J. T., Oliveira M. G. A., Donzele J. L., Gomide A. T. M., Menin E. (2000). Lipase activity in the chime of three Teleostei freshwater fish. Rev. Bras. Zootec., 29: 6–14.10.1590/S1516-35982000000100002Search in Google Scholar

Shahsavani D., Kazerani H. R., Kaveh S., Gholipour-Kanani H. (2010). Determination of some normal serum parameters in starry sturgeon (Acipenser stellatus Pallas, 1771) during spring season. Comp. Clin. Path., 19: 57–61.10.1007/s00580-009-0899-3Search in Google Scholar

Suárez M. D., Trenzado C. E., García-Gallego M., Furné M., García-Mesa S., Domezain A., Alba I., Sanz A. (2015). Interaction of dietary energy levels and culture density on growth performance and metabolic and oxidative status of rainbow trout (Oncorhynchus mykiss). Aquac. Eng., 67: 59–66.10.1016/j.aquaeng.2015.06.001Search in Google Scholar

Toledo T. M., Silva B. C., Vieira F. D. N., Mourino J. L. P., Seiffert W. Q. (2016). Effects of different dietary lipid levels and fatty acids profile in the culture of white shrimp Litopenaeus vannamei (Boone) in biofloc technology: water quality, biofloc composition, growth and health. Aquac. Res., 47: 1841–1851.10.1111/are.12642Search in Google Scholar

Wang G., Yu E., Xie J., Yu D., Li Z., Luo W., Qiu L., Zheng Z. (2015). Effect of C:N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443: 98–104.10.1016/j.aquaculture.2015.03.015Search in Google Scholar

Wang M., Lu M. (2016). Tilapia polyculture: a global review. Aquac. Res., 47: 2363–2374.10.1111/are.12708Search in Google Scholar

Xu W. J., Pan L. Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356: 147–152.10.1016/j.aquaculture.2012.05.022Search in Google Scholar

Xu W. J., Pan L. Q. (2014). Dietary protein level and C/N ratio manipulation in zero exchange culture of Litopenaeus vannamei: Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquac. Res., 45: 1842–1851.10.1111/are.12126Search in Google Scholar

Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J. M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium / Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae, 97: 101856.10.1016/j.hal.2020.101856Search in Google Scholar

Zhou X. X., Wang Y. B., Li W. F. (2009). Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture, 287: 349–353.10.1016/j.aquaculture.2008.10.046Search in Google Scholar

Ziaei-Nejad S., Rezaei M. H., Takami G. A., Lovett D. L., Mirvaghefi A. R., Shakouri M. (2006). The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252: 516–524.10.1016/j.aquaculture.2005.07.021Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine