1. bookVolume 21 (2021): Issue 2 (April 2021)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Effect of curcumin dietary supplementation on growth performance, physiology, carcass characteristics and meat quality in lambs

Published Online: 08 May 2021
Volume & Issue: Volume 21 (2021) - Issue 2 (April 2021)
Page range: 623 - 638
Received: 01 Oct 2019
Accepted: 06 Apr 2020
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

This study evaluated the effects of curcumin dietary supplementation on growth, physiology, carcass characteristics and meat quality in lambs. Thirty-two male Lacaune lambs (15.6 ± 0.63 kg, 60 ± 2.8 days of age) were randomly allocated in 16 pens (four treatments of four replicates with two lambs each) for 30 days. The animals were assigned to the following treatments: T0, T100, T200 and T300, representing 0, 100, 200 and 300 mg of curcumin/kg of concentrate, respectively. Curcumin dietary supplementation increased (P = 0.02) weight gain; on regression analysis, 315.1 mg curcumin/kg of concentrate was the dosage that provided the greatest weight gain. T200 and T300 lambs had lower (P = 0.04) erythrocytes numbers; T100 and T300 lambs had lower (P = 0.01) leukocyte numbers and T300 lambs had lower (P = 0.04) lymphocyte numbers, compared to T0 lambs. Globulin levels were significantly greater in the T200 group (P = 0.04) only on day 15 but not day 30; levels of total protein were significantly higher (P = 0.01) only in T200 and T300 group on day 15 and only in T200 group on d 30. Gamma-glutamyltransferase concentrations tended to be lower (P = 0.08) in T100, T200 and T300 group on d 15, and only in the T100 group on d 30. Curcumin dietary supplementation increased (P = 0.01) the serum activity of antioxidant enzymes and reduced (P = 0.01) levels of reactive oxygen species. In meat samples, T200 and T300 had greater total antioxidant capacity (P = 0.03) and lower (P = 0.01) lipoperoxidation rates. In carcasses, T300 lambs had greater (P ≤ 0.02) cooling weight losses and yields than did T0 lambs. Curcumin dietary supplementation also reduced (P ≤ 0.03) redness and yellowness. T200 and T300 lambs had fewer (P = 0.01) cooking losses and T200 lambs had greater (P = 0.03) water holding capacity than did T0 lambs. These findings suggest that curcumin dietary supplementation improves growth and antioxidant responses, as well as influencing meat quality in lambs.


Ahn J., Lee H., Ha S. K. T. (2010). Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling. Am. J. Physiol. Cell Physiol., 298: 1510–1516. Search in Google Scholar

Almeida Jr, G. A., Costa C., Monteiro A. L. G., Garcia C. A., Munari D. P., Neres M. A. (2004). Qualidade da carne de cordeiros criados em creep feeding com silagem de grãos úmidos de milho. Rev. Bras. Zootec., 33: 1039–1047. Search in Google Scholar

Alvarenga A. L., de Oliveira Leal V., Borges N. A., de Aguiar A. S., Faxén-Ir-ving G., Stenvinkel P., Mafra D. (2018). Curcumin – A promising nutritional strategy for chronic kidney disease patients. J. Funct. Foods, 40: 715–721. Search in Google Scholar

Amado L. L., Garcia M. L., Ramos P. B., Freitas R. F., Zafalon B., Ferreira J. L. R., Yunes J. S., Monserrat J. M. (2009). A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: Application to evaluate microcystins toxicity. Sci. Total Envirom., 407: 2115–2123. Search in Google Scholar

Aparicio-Trejo O. E., Tapia E., Molina-Jijón E., Medina-Campos O. N., Macías-Ruvalcaba N. A., León-Contreras J. C., Pedraza-Chaverri J. (2017). Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics. BioFactors, 43: 293–310. Search in Google Scholar

Bavarsada K., Riahi M. M., Saadat S., Barreto G. Atkin S. L., Sahebkar A. (2019). Protective effects of curcumin against ischemia-reperfusion injury in the liver. Pharmacol. Res., 141: 53–62. Search in Google Scholar

Bôas A. S. V., Arrigoni M. B., Silveira A. C., Costa C., Chardulo L. A. L. (2003). Effects of age at weaning and feed management on the production of super-young lambs. Rev. Bras. Zootec., 32: 1969–1980. Search in Google Scholar

Cañeque V., Sañudo C. (2015). Estandarización de las metodologías para evaluar la calidad del producto (animal vivo, canal, carne y grasa) en los ruminantes. Madri: INIA, 448 pp. Search in Google Scholar

Cardozo L. F., Pedruzzi L. M., Stenvinkel P., Stockler-Pinto M. B., Dalepra-ne J. B., Leite JR. M., Mafra D. (2013). Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie, 95: 1525–1533. Search in Google Scholar

Carlberg I., Mannervik B. (1985). Glutathione reductase. Meth. Enzymol., 113: 484–490. Search in Google Scholar

Carvalho J. R., Machado M. V. (2018). New insights about albumin and liver disease. Annals Hepatol., 17: 547–560. Search in Google Scholar

Coradini K., Lima F. O., Oliveira C. M., Chaves P. S., Athayde M. L., Carvalho L. M., Beck R. C. R. (2014). Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur. J. Pharm. Biopharm., 88: 178–185. Search in Google Scholar

Da Silva Barreto J., Tarouco F. M., de Godoi F. G. A., Geihs M. A., Abreu F. E. L., Fillmann G., Sandrini J. Z., da Rosa C. E. (2018). Induction of oxidative stress by chlorothalonil in the estuarine polychaete Laeonereis aurata. Aquatic Toxicol., 196: 1–8. Search in Google Scholar

De Almeida M., Da Rocha B. A., Francisco C. R. L., Miranda C. G., Santos P. D. D. F., De Araújo P. H. H., Sayer C., Leimann F. V., Gonçalves O. H., Barsani-Amado C. A. (2018). Evaluation of the in vivo acute antiinflammatory response of curcumin-loaded nanoparticles. Food Function, 9: 440–449. Search in Google Scholar

Ejaz A., Wu D., Kwan P., Meydani M. (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr., 139: 919–925. Search in Google Scholar

Feldman B. F., Zinkl J. G., Jain N. C. (2000). Schalm’s Veterinary Hematology, 5th ed. Lippincott Williams & Wilkins, Philadelphia. Search in Google Scholar

Flachowsky G., Meyer U. (2015). Challenges for plant breeders from the view of animal nutrition. Agriculture, 5: 1252–1276. Search in Google Scholar

Fu Y., Gao R., Cao Y., Guo M., Wei Z., Zhou E., Zhang N. (2014). Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol., 20: 54–58. Search in Google Scholar

Galli G. M., Gerbet G. G., Griss L. G., Fortuoso B. F., Petrolli T. G., Boiago M. M., Souza C. F., Baldissera M. D., Mesadri J., Wagner R., da Rosa G., Mendes R. E., Gris A., Da Silva A. S. (2020). Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog., 139: 103916. Search in Google Scholar

Gordon H. M., Whitlock H. V. A. (1939). New technique for counting nematode eggs in sheep faeces. J. Council Sci. Ind. Res. 12: 50–52. Search in Google Scholar

Habig W. H., Pabst M. J., Jakob W. B. (1974). Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 249: 7130–7139. Search in Google Scholar

Jaguezeski A. M., Perin G., Crecencio R. B., Baldissera, M. D., Stefanil, L. M., da Silva A. S. (2018). Addition of curcumin in dairy sheep diet in the control of subclinical mastitis. Acta Sci. Vet., 46: 297. Search in Google Scholar

Jungbauer A., Medjakovic S. (2012). Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas, 71: 227–239. Search in Google Scholar

Khan H., Ullah H., Nabavi S. M. (2019). Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem. Toxicol., 124: 182–191. Search in Google Scholar

Larmonier C. B., Midura-Kiela M. T., Ramalingam R., Laubitz D., Janikashvi-li N., Larmonier N., Ghishan F. K., Kiela P. R. (2011). Modulation of neutrophil motility by curcumin: Implications for inflammatory bowel disease. Inflamm. Bowel Dis., 17: 503–515. Search in Google Scholar

Le Bel C. P., Ischiropoulos H., Bondy S. C. (1992). Evaluation of the probe 2’,7’-dichlorofluorescin as indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol., 5: 227–231. Search in Google Scholar

Lee H. I., Mc Gregor R. A., Choi M. S., Seo K. I., Jung U. J., Yeo J., Kim M. J., Lee M. K. (2013). Low doses of curcumin protect alcohol-induced liver damage by modulation of the alcohol metabolic pathway, CYP2E1 and AMPK. Life Sci., 93: 693–699. Search in Google Scholar

Lu Y. C., Yeh W. C., Ohashi P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42: 145–151. Search in Google Scholar

Molosse V., Souza C. F., Baldissera M. D., Glombowsky P., Campigotto G., Ca-zaratto C. J., Stefani L. M., da Silva A. S. (2019). Diet supplemented with curcumin for nursing lambs improves animal growth, energetic metabolism, and performance of the antioxidant and immune systems. Small Rum. Res., 170: 74–81. Search in Google Scholar

Monserrat J. M., Geracitano L. A., Pinho G. L. L., Vinagre T. M., Faleiros M., Alcia-ti J. C., Bianchini A. (2003). Determination of lipid peroxides in invertebrates using the Fe (III) xylenol orange complex formation. Arch. Environ. Contam. Toxicol., 45: 177–183. Search in Google Scholar

Moreno G. M. B., Silva Sobrinho A. G., Rossi R. C., Perez H. L., Leão A. G., Zeo-la N. M. B. L., de Souza Júnior S. C. (2010). Performance and carcass yields of Ile de France lambs weaned at different ages. Rev. Bras. Saúde Prod. Anim., 11: 1105–1116. Search in Google Scholar

National Research Council – NRC (2007). Nutrient Requirements of Small Ruminant: Sheep, Goats, Cervids and New World Camelids. Washington, DC: National Academy Press. Search in Google Scholar

Paglia D. E., Valentine W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70: 158–169. Search in Google Scholar

Rahmani M., Golian A., Kermanshahi H., Reza Bassami M. (2018). Effects of curcumin or nanocurcumin on blood biochemical parameters, intestinal morphology and microbial population of broiler chickens reared under normal and cold stress conditions. J. Appl. Anim. Res., 46: 200–209. Search in Google Scholar

Salah A. S., Mahmoud M. A., Ahmed-Farid O. A., El-Tarabany M. S. (2019). Effects of dietary curcumin and acetylsalicylic acid supplements on performance, muscle amino acid and fatty acid profiles, antioxidant biomarkers and blood chemistry of heat-stressed broiler chickens. J. Ther. Biol., 84: 259–265. Search in Google Scholar

Santos L. L., Borges G. R. (2019). Factors that influence the consumption of sheep meat. Consumer Behavior Review, 3: 42–56. Search in Google Scholar

Slukwa M. A. (2014). Effect of early weaning and fattening of corral on the quality of meat in lambs. Rev. Vet., 2: 135–139. Search in Google Scholar

Soares K. M. P., da Silva J. B. A., de Góis V. A. (2017). Meat and meat quality parameters: A review. Hig. Alim., 31: 87–94. Search in Google Scholar

Srinivasan K., Sambaiah K. (1991). The effect of spices on cholesterol 7 alpha-hydroxylase activity and on serum and hepatic cholesterol levels in the rat. Int. J. Vit. Nutr. Res., 61: 364–369. Search in Google Scholar

Tapia E., Soto V., Ortiz-Veja K. M., Zarco-Márquez G., Molina-Jijón E., Cris-tóbal-García M., Pedraza-Chaverri J. (2012). Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in anti-oxidant enzymes in 5/6 nephrectomized rats. Oxid. Med. Cell. Longev., doi: 10.1155/2012/269039.10.1155/2012/269039342400522919438 Search in Google Scholar

Trujillo J., Chirino Y. I., Molina-Jijón E., Andérica-Romero A. C., Tapia E., Pe-draza-Chaverrí J. (2013). Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol. 1: 448–456. Search in Google Scholar

Wang X., Gao J., Wang Y., Zhao Y., Zhang Y., Han F., Zheng Z., Hu D. (2018). Curcumin pretreatment prevents hydrogenperoxide-induced oxidative stress through enhanced mitochondrial function and deactivation of Akt/Erk signaling pathways in rat bone marrow mesenchymal stem cells. Mol. Cell. Biochem., 443: 37–45. Search in Google Scholar

Yamamoto S. M., Garcia A., Silvio R., Pinheiro B., Leão A. G. (2013). Inclusion of sunflower seeds in the diet of lambs on carcass quantitative characteristics and meat quality. Semina: Ciênc. Agr., 34: 1925–1934. Search in Google Scholar

Yarru L. P., Settivari R. S., Gowda N. K., Antoniou E., Ledoux D. R., Rotting-hays G. E. (2009). Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poultry Sci., 88: 1620–2627. Search in Google Scholar

Yoshida K., Seto-Ohshima A., Sinohara H. (1997). Sequencing of cDNA encoding serum albumin and its extrahepatic synthesis in the Mongolian gerbil, Meriones unguiculatus. DNA Res., 4: 351–354. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo