1. bookVolume 21 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Overcoming bacterial resistance to antibiotics: the urgent need – a review

Published Online: 29 Jan 2021
Volume & Issue: Volume 21 (2021) - Issue 1 (January 2021)
Page range: 63 - 87
Received: 18 Nov 2019
Accepted: 09 Sep 2020
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The discovery of antibiotics is considered one of the most crucial breakthroughs in medicine and veterinary science in the 20th century. From the very beginning, this type of drug was used as a ‘miraculous cure’ for every type of infection. In addition to their therapeutic uses, antibiotics were also used for disease prevention and growth promotion in livestock. Though this application was banned in the European Union in 2006, antibiotics are still used in this way in countries all over the world. The unlimited and unregulated use of antibiotics has increased the speed of antibiotic resistance’s spread in different types of organisms. This phenomenon requires searching for new strategies to deal with hard-to-treat infections. The antimicrobial activity of some plant derivatives and animal products has been known since ancient times. At the beginning of this century, even more substances, such as antimicrobial peptides, were considered very promising candidates for becoming new alternatives to commonly used antimicrobials. However, many preclinical and clinical trials ended without positive results. A variety of strategies to fight microbes exist, but we are a long way from approving them as therapies. This review begins with the discovery of antibiotics, covers the modes of action of select antimicrobials, and ends with a literature review of the newest potential alternative approaches to overcoming the drug resistance phenomenon.

Keywords

A study to evaluate the safety and efficacy of Omiganan (CLS001) topical gel versus vehicle in female subjects with moderate to severe acne vulgaris. ClinicalTrials.gov.Search in Google Scholar

Adegoke A.A., Faleye A.C., Singh G., Stenström T.A. (2017). Antibiotic resistant superbugs: assessment of the interrelationship of occurrence in clinical settings and environmental niches. Mol. Basel Switz., 22: 29.Search in Google Scholar

Ahmad V., Khan M.S., Jamal Q.M.S., Alzohairy M.A., Al Karaawi M.A., Siddiqui M.U. (2017). Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int. J. Antimicrob. Agents, 49: 1–11.Search in Google Scholar

Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.-L.V., Cheng A.A., Liu S., etal. (2019). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res., gkz935.10.1093/nar/gkz935714562431665441Search in Google Scholar

Allen H.K., Trachsel J., Looft T., Casey T.A. (2014). Finding alternatives to antibiotics. Ann. N. Y. Acad. Sci., 1323: 91–100.Search in Google Scholar

Aminov R.I. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol., 1: 134.Search in Google Scholar

Andam C.P., Fournier G.P., Gogarten J.P. (2011). Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol. Rev., 35: 756–767.Search in Google Scholar

Andrès E. (2012). Cationic antimicrobial peptides in clinical development, with special focus on thanatin and heliomicin. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol., 31: 881–888.Search in Google Scholar

Arseculeratne S.N., Arseculeratne G. (2017). A re-appraisal of the conventional history of antibiosis and Penicillin. Mycoses, 60: 343–347.Search in Google Scholar

Bagnicka E., Strzałkowska N., Jóźwik A., Krzyżewski J., Horbańczuk J., Zwierzchowski L. (2010). Expression and polymorphism of defensins in farm animals. Acta Biochim. Pol., 57: 487–497.Search in Google Scholar

Ball A.P., Gray J.A., Murdoch J.M. (1978). The natural penicillins – Benzylpenicillin (Penicillin G) and Phenoxymethylpenicillin (Penicillin V). In: Antibacterial drugs today. Ed. Springer, Dordrecht, pp. 6–18.10.1007/978-94-011-8004-7_3Search in Google Scholar

Barna J.C.J., Williams D.H. (1984). The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Ann. Rev. Microbiol., 38: 339–357.Search in Google Scholar

Bennett J.W., Chung K.T. (2001). Alexander Fleming and the discovery of penicillin. Adv. Appl. Microbiol., 49: 163–184.Search in Google Scholar

Bentley R. (1997). Microbial secondary metabolites play important roles in medicine; prospects for discovery of new drugs. Perspect. Biol. Med., 40: 364–394.Search in Google Scholar

Blair S.E., Cokcetin N.N., Harry E.J., Carter D.A. (2009). The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol., 28: 1199–1208.Search in Google Scholar

Borie C., Sánchez M.L., Navarro C., Ramírez S., Morales M.A., Retamales J., Robeson J. (2009). Aerosol spray treatment with bacteriophages and competitive exclusion reduces Salmonella Enteritidis infection in chickens. Avian Dis., 53: 250–254.Search in Google Scholar

Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.-C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. Off. J. Soc. Toxicol., 88: 412–419.Search in Google Scholar

Bruin J., Aar M.vander, Overdevest I., Kluytmans J., Diederen B. (2010). P24.06 Prevalence of highly resistant Enterobacteriaceae including ESBLs in retail meat. J. Hosp. Infect., 76: S69.Search in Google Scholar

Callaway T.R., Edrington T.S., Brabban A.D., Anderson R.C., Rossman M.L., Engler M.J., Carr M.A., Genovese K.J., Keen J.E., Looper M.L., Kutter E.M., Nisbet D.J. (2008). Bacteriophage isolated from feedlot cattle can reduce Escherichia coli O157: H7 populations in ruminant gastrointestinal tracts. Foodborne Pathog. Dis., 5: 183–191.Search in Google Scholar

Cars O., Hedin A., Heddini A. (2011). The global need for effective antibiotics-moving towards concerted action. Drug Resist. Updat., 14: 68–69.Search in Google Scholar

CDC–Centersfor Disease Controland Prevention(2019). The biggest antibiotic-resistant threats in the U.S. http://dx.doi.org/10.15620/cdc:8253210.15620/cdc:82532Search in Google Scholar

Chen C., Guron G.K., Pruden A., Ponder M., Du P., Xia K. (2018). Antibiotics and antibiotic resistance genes in bulk and rhizosphere soils subject to manure amendment and vegetable cultivation. J. Environ. Qual., 47: 1318–1326.Search in Google Scholar

Chopra I., Roberts M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 65: 232–260.Search in Google Scholar

Cirz R.T., Chin J.K., Andes D.R., de Crécy-Lagard V., Craig W.A., Romesberg F.E. (2005). Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol., 3: e176.Search in Google Scholar

Clark D.P., Durell S., Maloy W.L., Zasloff M. (1994). Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J. Biol. Chem., 269: 10849–10855.Search in Google Scholar

Cook K.L., Netthisinghe A.M.P., Gilfillen R.A. (2014). Detection of pathogens, indicators, antibiotic resistance genes after land application of poultry litter. J. Environ. Qual., 43: 1546.Search in Google Scholar

Coppo E., Del Bono V., Ventura F., Camera M., Orengo G., Viscoli C., Marchese A. (2014). Identification of a New Delhi metallo-β-lactamase-4 (NDM-4)-producing Escherichia coli in Italy. BMC Microbiol., 14: 148.Search in Google Scholar

Costerton J.W., Cheng K.J., Geesey G.G., Ladd T.I., Nickel J.C., Dasgupta M., Marrie T.J. (1987). Bacterial biofilms in nature and disease. Annu. Rev. Microbiol., 41: 435–464.Search in Google Scholar

Cotter P.D., Hill C., Ross R.P. (2005). Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol., 3: 777–788.Search in Google Scholar

Crispie F., Flynn J., Ross R.P., Hill C., Meaney W. (2004). Update on the development of a novel dry cow therapy using a bismuth-based intramammary teat seal in combination with the bacteriocin lacticin 3147. Ir. Vet. J., 57: 652–656.Search in Google Scholar

Crispie F., Twomey D., Flynn J., Hill C., Ross P., Meaney W. (2005). The lantibiotic lacticin3147 produced in a milk-based medium improves the efficacy of a bismuth-based teat seal in cattle deliberately infected with Staphylococcus aureus. J. Dairy. Res., 72: 159–167.Search in Google Scholar

Cully M. (2014). Public health: The politics of antibiotics. Nature, 509: S16–S17.Search in Google Scholar

D’Agostino M., Tesse N., Frippiat J.P., Machouart M., Debourgogne A. (2019). Essential oils and their natural active compounds presenting antifungal properties. Molecules, 24: 3713.Search in Google Scholar

D’Costa V.M., King C.E., Kalan L., Morar M., Sung W.W.L., Schwarz C., Froese D., Zazula G., Calmels F., Debruyne R., etal. (2011). Antibiotic resistance is ancient. Nature, 477: 457–461.Search in Google Scholar

Dąbrowska K., Abedon S.T. (2019). Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol. Mol. Biol. Rev., 83.10.1128/MMBR.00012-19682299031666296Search in Google Scholar

Davies J., Davies D. (2010). Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 74: 417–433.Search in Google Scholar

de Breij A., Riool M., Cordfunke R.A., Malanovic N., de Boer L., Koning R.I., Ravensbergen E., Franken M., vander Heijde T., Boekema B.K., etal. (2018). The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med., 10.Search in Google Scholar

de Jong J., Bos J.H.J., de Vries T.W., de Jong-vanden Berg L.T.W. (2014). Use of antibiotics in rural and urban regions in The Netherlands: an observational drug utilization study. BMC Public Health, 14: 677.Search in Google Scholar

De Smet K., Contreras R. (2005). Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol. Lett., 27: 1337–1347.Search in Google Scholar

Desai J.V., Mitchell A.P., Andes D.R. (2014). Fungal biofilms, drug resistance, recurrent infection. Cold Spring Harb. Perspect. Med., 4: a019729.Search in Google Scholar

Dibner J.J., Richards J.D. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry Sci., 84: 634–643.Search in Google Scholar

Djeraba A., Quere P. (2000). In vivo macrophage activation in chickens with Acemannan, a complex carbohydrate extracted from Aloe vera. Int. J. Immunopharmacol., 22: 365–372.Search in Google Scholar

Dowling P.M. (2013 a). Peptide Antibiotics. In: Antimicrobial Therapy in Veterinary Medicine. John Wiley & Sons, Ltd, pp. 189–198.10.1002/9781118675014.ch11Search in Google Scholar

Dowling P.M. (2013 b). Miscellaneous Antimicrobials. In: Antimicrobial Therapy in Veterinary Medicine. John Wiley & Sons, Ltd, pp. 315–332.10.1002/9781118675014.ch19Search in Google Scholar

Duckett S. (1999). Ernest Duchesne and the concept of fungal antibiotic therapy. Lancet Lond. Engl., 354: 2068–2071.Search in Google Scholar

Duewelhenke N., Krut O., Eysel P. (2007). Influence on mitochondria and cytotoxicity of different antibiotics administered in high concentrations on primary human osteoblasts and cell lines. Antimicrob. Agents Chemother., 51: 54–63.Search in Google Scholar

Dufour D., Leung V., Lévesque C.M. (2010). Bacterial biofilm: structure, function, antimicrobial resistance. Endod. Top., 22: 2–16.Search in Google Scholar

Dwivedi S., Saquib Q., Al-Khedhairy A.A., Musarrat J. (2016). Understanding the role of nanomaterials in agriculture. In Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp. 271–288.10.1007/978-81-322-2644-4_17Search in Google Scholar

Fangio M.F., Orallo D.E., Gende L.B., Churio M.S. (2019). Chemical characterization and antimicrobial activity against Paenibacillus larvae of propolis from Buenos Aires province, Argentina. J. Aplic. Res., 58: 626–638.Search in Google Scholar

Field D., Gaudin N., Lyons F., O’Connor P.M., Cotter P.D., Hill C., Ross R.P. (2015). A bioengineered Nisin derivative to control biofilms of Staphylococcus pseudintermedius. PLoS One, 10: e0119684.Search in Google Scholar

Fleming A. (1929). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br. J. Exp. Pathol., 10: 226–236.Search in Google Scholar

Frieri M., Kumar K., Boutin A. (2017). Antibiotic resistance. J. Infect. Public Health, 10: 369–378.Search in Google Scholar

Fritsche T.R., Rhomberg P.R., Sader H.S., Jones R.N. (2008 a) Antimicrobial activity of omiganan pentahydrochloride against contemporary fungal pathogens responsible for catheter-associated infections. Antimicrob. Agents Chemother., 52: 1187–1189.10.1128/AAC.01475-07225849518180345Search in Google Scholar

Fritsche T.R., Rhomberg P.R., Sader H.S., Jones R.N. (2008 b). Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections. J. Antimicrob. Chemother., 61: 1092–1098.10.1093/jac/dkn07418310135Search in Google Scholar

Giguère S., Dowling P.M. (2013). Fluoroquinolones. In: Antimicrobial Therapy in Veterinary Medicine. John Wiley & Sons, Ltd, pp. 295–314.10.1002/9781118675014.ch18Search in Google Scholar

Godlewska M., Świsłocka R. (2015). The physicochemical and antimicrobial properties of honey from the region of Podlasie (in Polish). Kosmos, 64: 347–352.Search in Google Scholar

González-Mas M.C., Rambla J.L., López-Gresa M.P., Blázquez M.A., Granell A. (2019). Volatile compounds in citrus essential oils: a comprehensive review. Front. Plant Sci., 10.10.3389/fpls.2019.00012Search in Google Scholar

Grecka K., Kuś P.M., Okińczyc P., Worobo R.W., Walkusz J., Szweda P. (2019). The anti-staphylococcal potential of ethanolic Polish propolis extracts. Molecules, 24: 1732.Search in Google Scholar

Gucwa K., Milewski S., Dymerski T., Szweda P. (2018). Investigation of the antifungal activity and mode of action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus essential oils. Molecules, 23: 1116.Search in Google Scholar

Hancock R.E. (1997). Peptide antibiotics. Lancet Lond. Engl., 349: 418–422.Search in Google Scholar

Heuer H., Schmitt H., Smalla K. (2011). Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol., 14: 236–243.Search in Google Scholar

Hoffman S.J., Outterson K., Røttingen J.-A., Cars O., Clift C., Rizvi Z., Rot-berg F., Tomson G., Zorzet A. (2015). An international legal framework to address antimicrobial resistance. Bull. World Health Organ., 93: 66.Search in Google Scholar

Holmes A.H., Moore L.S.P., Sundsfjord A., Steinbakk M., Regmi S., Karkey A., Guerin P.J., Piddock L.J.V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 387: 176–187.Search in Google Scholar

Ibrahim M.E., Bilal N.E., Hamid M.E. (2012). Increased multi-drug resistant Escherichia coli from hospitals in Khartoum state, Sudan. Afr. Health Sci., 12: 368–375.Search in Google Scholar

Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz M.A., Hussain T., Ali M., Rafiq M., Kamil M.A. (2018). Bacterial biofilm and associated infections. J. Chin. Med. Assoc., 81: 7–11.Search in Google Scholar

Jarczak J., Kościuczuk E.M., Lisowski P., Strzałkowska N., Jóźwik A., Horbań-czuk J., Krzyżewski J., Zwierzchowski L., Bagnicka E. (2013). Defensins: natural component of human innate immunity. Hum. Immunol., 74: 1069–1079.Search in Google Scholar

Jones O.A., Lester J.N., Voulvoulis N. (2005). Pharmaceuticals: a threat to drinking water? Trends Biotechnol., 23: 163–167.Search in Google Scholar

Jouanna J. (2012). Greek medicine from Hippocrates to Galen: Selected papers. Brill.10.1163/9789004232549Search in Google Scholar

Kapoor G., Saigal S., Elongavan A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 33: 300–305.Search in Google Scholar

Khan S.U., Anjum S.I., Rahman K., Ansari M.J., Khan W.U., Kamal S., Khattak B., Muhammad A., Khan H.U. (2018). Honey: Single food stuff comprises many drugs. Saudi J. Biol. Sci., 25: 320–325.Search in Google Scholar

Kim K.H., Ingale S.L., Kim J.S., Lee S.H., Lee J.H., Kwon I.K., Chae B.J. (2014). Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophage are more effective. Anim. Feed. Sci. Tech., 196: 88–95.Search in Google Scholar

Klostermann K., Crispie F., Flynn J., Meaney W.J., Paul R.R., Hill C. (2010). Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis. J. Dairy. Res., 77: 231–238.Search in Google Scholar

Kon K., Rai M. (2016). Antibiotic resistance: mechanisms and new antimicrobial approaches. Academic Press.Search in Google Scholar

Kościuczuk E.M., Lisowski P., Jarczak J., Strzałkowska N., Jóźwik A., Horbań-czuk J., Krzyżewski J., Zwierzchowski L., Bagnicka, E. (2012). Cathelicidins: family of antimicrobial peptides. A review. Mol. Biol. Rep., 39: 10957–10970.Search in Google Scholar

Kouidhi B., Al Qurashi Y.M.A., Chaieb K. (2015). Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microb. Pathog., 80: 39–49.Search in Google Scholar

Kubicki J. (2013). History of the syphilis (in Polish). Puls Uczel., 3: 37–39.Search in Google Scholar

Kurek A., Grudniak A.M., Kraczkiewicz-Dowjat A., Wolska K.I. (2011). New antibacterial therapeutics and strategies. Pol. J. Microbiol., 60: 3–12.Search in Google Scholar

Kuś P.M., Szweda P., Jerković I., Tuberoso C.I.G. (2016). Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett. Appl. Microbiol., 62: 269–276.Search in Google Scholar

Landecker H. (2016). Antibiotic resistance and the biology of history. Body Soc., 22: 19–52.Search in Google Scholar

Levy S.B., Marshall B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med., 10: 122–129.Search in Google Scholar

Lewis K. (2001). Riddle of biofilm resistance. Antimicrob. Agents Chemother., 45: 999–1007.Search in Google Scholar

Liu B., Pop M. (2009). ARDB – Antibiotic Resistance Genes Database. Nucleic Acids Res., 37: D443–D447.Search in Google Scholar

Lloyd D.H. (2012). Alternatives to conventional antimicrobial drugs: a review of future prospects. Vet. Dermatol., 23: 299–304, e59–60.Search in Google Scholar

Loc-Carrillo C., Abedon S.T. (2011). Pros and cons of phage therapy. Bacteriophage, 1: 111–114.Search in Google Scholar

Lopez-Carrizales M., Velasco K.I., Castillo C., Flores A., Magaña M., Martinez-Castanon G.A., Martinez-Gutierrez F. (2018). In vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens. Antibiot. Basel Switz., 7: 50.Search in Google Scholar

Mac Fadden D.R., Mc Gough S.F., Fisman D., Santillana M., Brownstein J.S. (2018). Antibiotic resistance increases with local temperature. Nat. Clim. Change, 8: 510–514.Search in Google Scholar

Mahlapuu M., Håkansson J., Ringstad L., Björn C. (2016). Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 6: 194.Search in Google Scholar

Mao X.F., Piao X.S., Lai C.H., Li D.F., Xing J.J., Shi B.L. (2005). Effects of β-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, somatotropic responses of weanling pigs. J. Anim. Sci., 83: 2775–2782.Search in Google Scholar

Martínez J.L., Baquero F., Andersson D.I. (2007). Predicting antibiotic resistance. Nat. Rev. Microbiol., 5: 958–965.Search in Google Scholar

Miller R.W., Skinner J., Sulakvelidze A., Mathis G.F., Hofacre C.L. (2010). Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis., 54: 33–40.Search in Google Scholar

Moellering R.C. (2011). Discovering new antimicrobial agents. Int. J. Antimicrob. Agents, 37: 2–9.Search in Google Scholar

Mohr K.I. (2016). History of antibiotics research. In: How to overcome the antibiotic crisis, M. Stadler, P. Dersch, eds. Cham, Springer International Publishing, pp. 237–272.10.1007/82_2016_499Search in Google Scholar

Naafs M.A.B. (2018). The antimicrobial peptides: ready for clinical trials? Biomed. J. Sci. Tech. Res., 7: 6038–6042.Search in Google Scholar

Nam S., Choi Y., Jang S., Shim Y., Han G. (2016). Antimicrobial activity of propolis on different oral bacteria. Indian J. Sci. Technol., 9: 1–4.Search in Google Scholar

Namkung H., Li M., Gong J., Yu H., Cottrill M., de Lange C.F.M. (2004). Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Can. J. Anim. Sci., 84: 697–704.Search in Google Scholar

Nishie M., Nagao J.-I., Sonomoto K. (2012). Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol. Sci., 17: 1–16.Search in Google Scholar

Nobrega F.L., Costa A.R., Kluskens L.D., Azeredo J. (2015). Revisiting phage therapy: new applications for old resources. Trends Microbiol., 23: 185–191.Search in Google Scholar

Oliveira A.V., Ferreira A.L., Nunes S., Dandlen S.A., Miguel M.D.G., Faleiro M.L. (2017). Antibacterial activity of propolis extracts from the south of Portugal. Pak. J. Pharm. Sci., 30.Search in Google Scholar

Overdevest I., Willemsen I., Rijnsburger M., Eustace A., Xu L., Hawkey P., Heck M., Savelkoul P., Vandenbroucke-Grauls C., vander Zwaluw K., etal. (2011). Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg. Infect. Dis., 17: 1216–1222.Search in Google Scholar

Pajor M., Worobo R.W., Milewski S., Szweda P. (2018). The antimicrobial potential of bacteria isolated from honey samples produced in the apiaries located in Pomeranian Voivodeship in Northern Poland. Int. J. Environ. Res. Public. Health, 15.10.3390/ijerph15092002Search in Google Scholar

Peacock S.J., Paterson G.K. (2015). Mechanisms of methicillin resistance in Staphylococcus aureus. Annu. Rev. Biochem., 84: 577–601.Search in Google Scholar

Peterson E., Kaur P. (2018). Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, clinical pathogens. Front. Microbiol., 9.10.3389/fmicb.2018.02928Search in Google Scholar

Pirisi A. (2000). Phage therapy – advantages over antibiotics? Lancet, 356: 1418.10.1016/S0140-6736(05)74059-9Search in Google Scholar

Pouillard J. (2002). A forgotten discovery: doctor of medicine Ernest Duchesne’s thesis (1874–1912). Hist. Sci. Medicales, 36: 11–20.Search in Google Scholar

Prescott J.F. (2013). Beta-lactam antibiotics. In: Antimicrobial therapy in veterinary medicine. John Wiley & Sons, Ltd, pp. 153–173.Search in Google Scholar

Prystowsky J., Siddiqui F., Chosay J., Shinabarger D.L., Millichap J., Peter-son L.R., Noskin G.A. (2001). Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob. Agents Chemother., 45: 2154–2156.Search in Google Scholar

Przybyłek I., Karpiński T.M. (2019). Antibacterial properties of propolis. Molecules, 24: 2047.Search in Google Scholar

Raut J.S., Karuppayil S.M. (2014). A status review on the medicinal properties of essential oils. Ind. Crops Prod., 62: 250–264.Search in Google Scholar

Roccanova L., Rappa P. (2000). Antibiotic rotation. Science, 287: 803.Search in Google Scholar

Sagdic O., Ekici L., Ozturk I., Tekinay T., Polat B., Tastemur B., Bayram O., Senturk B. (2013). Cytotoxic and bioactive properties of different color tulip flowers and degradation kinetic of tulip flower anthocyanins. Food Chem. Toxicol., 58: 432–439.Search in Google Scholar

Satpathy S., Sen S.K., Pattanaik S., Raut S. (2016). Review on bacterial biofilm: An universal cause of contamination. Biocatal. Agric. Biotechnol., 7: 56–66.Search in Google Scholar

Schwarz S., Shen J., Kadlec K., Wang Y., Brenner Michael G., Feßler A.T., Vester B. (2016). Lincosamides, streptogramins, phenicols, pleuromutilins: mode of action and mechanisms of resistance. Cold Spring Harb. Perspect. Med., 6.10.1101/cshperspect.a027037508850827549310Search in Google Scholar

Shama G. (2016). La Moisissure et la Bactérie: Deconstructing the fable of the discovery of penicillin by Ernest Duchesne. Endeavour, 40: 188–200.Search in Google Scholar

Singer A.C., Shaw H., Rhodes V., Hart A. (2016). Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol., 7.10.3389/fmicb.2016.01728508850127847505Search in Google Scholar

Singh B., Sharma R.A. (2015). Anti-inflammatory and antimicrobial properties of flavonoids from heliotropium subulatum exudate. Inflamm. Allergy Drug Targets, 14: 125–132.Search in Google Scholar

Stefani S., Varaldo P.E. (2003). Epidemiology of methicillin-resistant staphylococci in Europe. Clin. Microbiol. Infect., 9: 1179–1186.Search in Google Scholar

Study of Omiganan 1% gel in preventing catheter infections/colonization in patients with central venous catheters. ClinicalTrials.gov.Search in Google Scholar

Szweda P., Gucwa K., Kurzyk E., Romanowska E., Dzierżanowska-Fangrat K., Zielińska-Jurek A., Kuś P.M., Milewski S. (2015). Essential oils, silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Indian J. Microbiol., 55: 175–183.Search in Google Scholar

Szweda P., Zalewska M., Pilch J., Kot B., Milewski S. (2018). Essential oils as potential anti-staphylococcal agents. Acta Vet. Beogr., 68: 95–107.Search in Google Scholar

The European Union Summary Reportonantimicrobialresistanceinzoonoticandindicatorbacteriafromhumans, animalsandfoodin2012(2014). EFSA J., 12: 3590.Search in Google Scholar

Trial of Iseganan in Prevention of Ventilator-Associated Pneumonia. ClinicalTrials.gov.Search in Google Scholar

von Wintersdorff C.J.H., Penders J., van Niekerk J.M., Mills N.D., Majumder S., van Alphen L.B., Savelkoul P.H.M., Wolffs P.F.G. (2016). Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol., 7: 173.Search in Google Scholar

Waihenya R.K., Mtambo M.M.A., Nkwengulila G., Minga U.M. (2002). Efficacy of crude extract of Aloe secundiflora against Salmonella gallinarum in experimentally infected freerange chickens in Tanzania. J. Ethnopharmacol., 79: 317–323.Search in Google Scholar

Wainwright M. (1985). Re-examination of some of John Tyndall’s studies on microbial antagonism. Trans. Br. Mycol. Soc., 85: 526–529.Search in Google Scholar

Waksman S.A. (1947). What is an antibiotic or an antibiotic substance? Mycologia, 39: 565–569.10.1080/00275514.1947.12017635Search in Google Scholar

Wang F.-H., Qiao M., Chen Z., Su J.-Q., Zhu Y.-G. (2015). Antibiotic resistance genes in manure- amended soil and vegetables at harvest. J. Hazard. Mater., 299: 215–221.Search in Google Scholar

Wattam A.R., Davis J.J., Assaf R., Boisvert S., Brettin T., Bun C., Conrad N., Dietrich E.M., Disz T., Gabbard J.L., etal. (2017). Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res., 45: D535–D542.Search in Google Scholar

Weston R.J. (2000). The contribution of catalase and other natural products to the antibacterial activity of honey: a review. Food Chem., 71: 235–239.Search in Google Scholar

Woc-Colburn L., Francisco D.M.A. (2020). Multidrug resistance bacterial infection. In: Highly infectious diseases in critical care: a comprehensive clinical guide, J. Hidalgo, L. Woc-Colburn, eds. Cham: Springer International Publishing, pp. 139–146.10.1007/978-3-030-33803-9_8Search in Google Scholar

Wolf E.P., Lewis J.H. (1919) The effect of feeding yeast on antibody production. Int. J. Infect. Dis., 25: 311–314.Search in Google Scholar

Wolny-Koładka K., Sikora A., Malina D. (2018). Evaluation of silver nanoparticles toxicity to drug-resistant Escherichia coli strains isolated from municipal waste (in Polish). Infrastruktura Ekol. Teren. Wiej., 1: 7:23.Search in Google Scholar

Wrigley S., Hayes M., Thomas R., Chrystal E.J.T., Nicholson N. (2000). Biodiversity: new leads for the pharmaceutical and agrochemical industries. Royal Society of Chemistry.Search in Google Scholar

Yoon K.-Y., Hoon Byeon J., Park J.-H., Hwang J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ., 373: 572–575.Search in Google Scholar

Zalewska M., Churey J.J., Worobo R.W., Milewski S., Szweda P. (2018). Isolation of bacteriocin-producing Staphylococcus spp. strains from human skin wounds, soft tissue infections and bovine mastitis. Pol. J. Microbiol., 67: 163–169.Search in Google Scholar

Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. (2012). Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother., 67: 2640–2644.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo