1. bookVolume 21 (2021): Issue 3 (July 2021)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Chlorella vulgaris Microalgae and Copper Mixture Supplementation Enhanced the Nutrient Digestibility and Milk Attributes in Lactating Boer Goats

Published Online: 05 Aug 2021
Volume & Issue: Volume 21 (2021) - Issue 3 (July 2021)
Page range: 939 - 957
Received: 10 Feb 2020
Accepted: 06 Aug 2020
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Thirty-two lactating Boer goats (35.2 ± 1.4 kg body weight) were grouped into control and three treatment groups in completely randomised design. In treatment groups, supplementation was done as a mixture of 5 g Chlorella vulgaris + 4.5 mg of supplemental Cu/kg diet from CuSO4 (Alg5 treatment), 10 g C. vulgaris + 9 mg of supplemental Cu/kg diet (Alg10 treatment), or a mixture of 15 g C. vulgaris + 13.5 mg of supplemental Cu/kg diet (Alg15 treatment). Treatments did not affect feed intake; however, Alg10 treatment increased (P<0.001) nutrient digestibility. Treatments did not affect ruminal pH, ammonia-N, butyrate; however, the Alg10 treatment increased (P<0.01) ruminal total volatile fatty acids, propionate and acetate concentrations. Without affecting other blood measurements, the Alg10 treatment quadratically increased (P<0.001) serum glucose and Cu. The Alg10 treatments increased (P<0.001) daily milk production and the concentration of fat, and enhanced milk (feed) efficiency. The Alg10 treatment decreased (P<0.05) milk saturated fatty acids and the atherogenic index, and increased the proportions of total conjugated linoleic acids, C18:1n9t, odd fatty acids and total unsaturated fatty acids compared with the control treatment. Present study concluded that inclusion of a mixture of 10 g C. vulgaris + 9 mg Cu/kg diet in the diet of lactating Boer goats enhanced nutrient digestibility, ruminal fermentation, milk production, feed efficiency as well as milk nutritive value. Increasing the dose of the mixture to 15 g C. vulgaris + 13.5 mg Cu/kg diet is not recommended in the diet of lactating Boer goats.


AOAC, (1997). Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Washington, DC, USA. Search in Google Scholar

Chilliard Y., Ferlay A., (2004). Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 44, 467–492. https://doi.org/10.1051/rnd:2004052 10.1051/rnd:2004052 Search in Google Scholar

Corl B.A., Baumgard L.H., Dwyer D.A., Griinari J.M., Phillips B.S., Bauman D.E., (2001). The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 12, Pages 622-630. https://doi.org/10.1016/S0955-2863(01)00180-210.1016/S0955-2863(01)00180-2 Search in Google Scholar

El-Zaiat H.M., Kholif A.E., Mohamed D.A., Matloup O.H., Anele U.Y., Sallam S.M.A., (2019). Enhancing lactational performance of Holstein dairy cows under commercial production: malic acid as an option. J. Sci. Food Agric. 99, 885–892. https://doi.org/10.1002/jsfa.925910.1002/jsfa.925930009384 Search in Google Scholar

France J., Dijkstra J., (2009). Volatile fatty acid production., in: Quantitative Aspects of Ruminant Digestion and Metabolism. CABI, pp. 157–175. https://doi.org/10.1079/9780851998145.015710.1079/9780851998145.0157 Search in Google Scholar

Gomaa A.S., Kholif A.E., Kholif A.M., Salama R., El-Alamy H.A., Olafadehan O.A., (2018). Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. J. Agric. Food Chem. 66, 1751–1759. https://doi.org/10.1021/acs.jafc.7b0470410.1021/acs.jafc.7b0470429397713 Search in Google Scholar

Han J.G., Kang G.G., Kim J.K., Kim S.H., (2002). The present status and future of Chlorella. Food Sci. Ind. 6, 64–69. Search in Google Scholar

Iwamoto H., (2004). Industrial production of microalgal cellmass and secondary products - Major industrial species. Chlorella, in: Richmond, A. (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science, Oxford, UK, pp. 255–263. Search in Google Scholar

Karkos P.D., Leong S.C., Karkos C.D., Sivaji N., Assimakopoulos D.A., (2011). Spirulina in clinical practice: evidence-based human applications. Evidence-based complement. Evidence-Based Complement. Altern. Med. 2011, 1–4. https://doi.org/10.1093/ecam/nen05810.1093/ecam/nen058313657718955364 Search in Google Scholar

Kholif A.E., (2019). Glycerol use in dairy diets: A systemic review. Anim. Nutr. 5, 209–216. https://doi.org/10.1016/j.aninu.2019.06.002 10.1016/j.aninu.2019.06.002673925931528721 Search in Google Scholar

Kholif A.E., Abdo M.M., Anele U.Y., El-Sayed M.M., Morsy T.A., (2017a). Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation and lactational performance of Nubian goats. Livest. Sci. 206, 17–23. https://doi.org/10.1016/j.livsci.2017.10.002 10.1016/j.livsci.2017.10.002 Search in Google Scholar

Kholif A.E., Elghandour M.M.Y., Salem A.Z.M., Barbabosa A., Márquez O., Odongo N.E., (2017b). The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production. J. Agric. Sci. 155, 494–507. https://doi.org/10.1017/S002185961600081210.1017/S0021859616000812 Search in Google Scholar

Kholif A.E., Gouda G.A., Anele U.Y., Galyean M.L., (2018a). Extract of Moringa oleifera leaves improves feed utilization of lactating Nubian goats. Small Rumin. Res. 158, 69–75. https://doi.org/10.1016/j.smallrumres.2017.10.01410.1016/j.smallrumres.2017.10.014 Search in Google Scholar

Kholif A.E., Gouda G.A., Galyean M.L., Anele U.Y., Morsy T.A., (2019). Extract of Moringa oleifera leaves increases milk production and enhances milk fatty acid profile of Nubian goats. Agrofor. Syst. 93, 1877–1886. https://doi.org/10.1007/s10457-018-0292-910.1007/s10457-018-0292-9 Search in Google Scholar

Kholif A.E., Gouda G.A., Olafadehan O.A., Abdo M.M., (2018b). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. animal 12, 964–972. https://doi.org/10.1017/S1751731117002336 10.1017/S175173111700233628988560 Search in Google Scholar

Kholif A.E., Hamdon H.A., Kassab A.Y., Farahat E.S.A., Azzaz H.H., Matloup O.H., Mohamed A.G., Anele U.Y., (2020). Chlorella vulgaris microalgae and/or copper supplementation enhanced feed intake, nutrient digestibility, ruminal fermentation, blood metabolites and lactational performance of Boer goat. J. Anim. Physiol. Anim. Nutr. (Berl). in press. https://doi.org/10.1111/jpn.1337810.1111/jpn.1337832388911 Search in Google Scholar

Kholif A.E., Kassab A.Y., Azzaz H.H., Matloup O.H., Hamdon H.A., Olafadehan O.A., Morsy T.A., (2018c). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Rumin. Res. 161, 43–50. https://doi.org/10.1016/j.smallrumres.2018.02.011 10.1016/j.smallrumres.2018.02.011 Search in Google Scholar

Kholif A.E., Matloup O.H., Morsy T.A., Abdo M.M., Abu Elella A.A., Anele U.Y., Swanson K.C., (2017c). Rosemary and lemongrass herbs as phytogenic feed additives to improve efficient feed utilization, manipulate rumen fermentation and elevate milk production of Damascus goats. Livest. Sci. 204, 39–46. https://doi.org/10.1016/j.livsci.2017.08.001 10.1016/j.livsci.2017.08.001 Search in Google Scholar

Kholif A.E., Morsy T.A., Abd El Tawab A.M., Anele U.Y., Galyean M.L., (2016). Effect of supplementing diets of Anglo-Nubian goats with soybean and flaxseed oils on lactational performance. J. Agric. Food Chem. 64, 6163–6170. https://doi.org/10.1021/acs.jafc.6b0262510.1021/acs.jafc.6b0262527415418 Search in Google Scholar

Kholif A.E., Morsy T.A., Abdo M.M., (2018d). Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Anim. Feed Sci. Technol. 244, 66–75. https://doi.org/10.1016/j.anifeedsci.2018.08.003 10.1016/j.anifeedsci.2018.08.003 Search in Google Scholar

Kholif A.E., Morsy T.A., Matloup O.H., Anele U.Y., Mohamed A.G., El-Sayed A.B., (2017d). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J. Agric. Sci. 155, 508–518. https://doi.org/10.1017/S0021859616000824 10.1017/S0021859616000824 Search in Google Scholar

Kotrbáček V., Doubek J., Doucha J., (2015). The chlorococcalean alga Chlorella in animal nutrition: a review. J. Appl. Phycol. 27, 2173–2180. https://doi.org/10.1007/s10811-014-0516-y 10.1007/s10811-014-0516-y Search in Google Scholar

Lamminen M., Halmemies-Beauchet-Filleau A., Kokkonen T., Jaakkola S., Vanhatalo A., (2019). Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim. Feed Sci. Technol. 247, 112–126. https://doi.org/10.1016/j.anifeedsci.2018.11.005 10.1016/j.anifeedsci.2018.11.005 Search in Google Scholar

Marrez D., Cieślak A., Gawad R., Ebeid H., Chrenková M., Gao M., Yanza Y., El-Sherbiny M., Szumacher-Strabel M., (2017). Effect of freshwater microalgae Nannochloropsis limnetica on the rumen fermentation in vitro. J. Anim. Feed Sci. 26, 359–364. https://doi.org/10.22358/jafs/81275/2017 10.22358/jafs/81275/2017 Search in Google Scholar

Matloup O.H., Abd El Tawab A.M., Hassan A.A., Hadhoud F.I., Khattab M.S.A., Khalel M.S., Sallam S.M.A., Kholif A.E., (2017). Performance of lactating Friesian cows fed a diet supplemented with coriander oil: Feed intake, nutrient digestibility, ruminal fermentation, blood chemistry, and milk production. Anim. Feed Sci. Technol. 226, 88–97. https://doi.org/10.1016/j.anifeedsci.2017.02.012 10.1016/j.anifeedsci.2017.02.012 Search in Google Scholar

Morsy T.A., Kholif A.E., Matloup O.H., Abu Elella A., Anele U.Y., Caton J.S., (2018). Mustard and cumin seeds improve feed utilisation, milk production and milk fatty acids of Damascus goats. J. Dairy Res. 85, 142–151. https://doi.org/10.1017/S0022029918000043 10.1017/S002202991800004329478424 Search in Google Scholar

Morsy T.A., Kholif S.M., Kholif A.E., Matloup O.H., Salem A.Z.M., Abu Elella A., (2015). Influence of sunflower whole seeds or oil on ruminal fermentation, milk production, composition, and fatty acid profile in lactating goats. Asian-Australasian J. Anim. Sci. 28, 1116–1122. https://doi.org/10.5713/ajas.14.0850 10.5713/ajas.14.0850447847926104519 Search in Google Scholar

Moss A.R., Jouany J.-P.P., Newbold J., (2000). Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49, 231–253. https://doi.org/10.1051/animres:2000119 10.1051/animres:2000119 Search in Google Scholar

NRC, (2007). Nutrient requirements for sheep, goats, cervids, and New World Camelids. National Academy Press, Washington, DC, USA. Search in Google Scholar

Ørskov E.R., Ryle M., (1990). Energy nutrition in ruminants. Springer Netherlands, Switzerland AG. Search in Google Scholar

Póti P., Pajor F., Bodnár Á., Penksza K., Köles P., (2015). Effect of micro-alga supplementation on goat and cow milk fatty acid composition. Chil. J. Agric. Res. 75, 259–263. https://doi.org/10.4067/S0718-58392015000200017 10.4067/S0718-58392015000200017 Search in Google Scholar

Rojo R., Kholif A.E., Salem A.Z.M., Elghandour M.M.Y., Odongo N.E., Montes de Oca R., Rivero N., Alonso M.U., (2015). Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. J. Agric. Sci. 153, 1514–1523. https://doi.org/10.1017/S0021859615000775 10.1017/S0021859615000775 Search in Google Scholar

Roshanzamir H., Rezaei J., Fazaeli H., (2020). Colostrum and milk performance, and blood immunity indices and minerals of Holstein cows receiving organic Mn, Zn and Cu sources. Anim. Nutr. in press. https://doi.org/10.1016/j.aninu.2019.08.003 10.1016/j.aninu.2019.08.003708372232211530 Search in Google Scholar

Sales J., Janssens G., (2003). Acid-insoluble ash as a marker in digestibility studies: a review. J. Anim. Feed Sci. 12, 383–401. https://doi.org/10.22358/jafs/67718/2003 10.22358/jafs/67718/2003 Search in Google Scholar

Sallam S.M.A., Abdelmalek M.L.R., Kholif A.E., Zahran S.M., Ahmed M.H., Zeweil H.S., Attia M.F.A., Matloup O.H., Olafadehan O.A., (2020). The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Anim. Biotechnol. https://doi.org/10.1080/10495398.2019.1625783 10.1080/10495398.2019.162578331204579 Search in Google Scholar

Satter L.D., Slyter L.L., (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32, 199–208. https://doi.org/10.1079/bjn19740073 10.1079/BJN19740073 Search in Google Scholar

Sjaunja L.O., Baevre L., Junkkarinen L., Pedersen J., Setala J., (1991). A nordic proposal for an energy corrected milk (ECM) formula: performance recording of animals. State of the art. EAAP Publ. 50, 156–157. Search in Google Scholar

Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G., (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205. 10.1128/br.35.2.171-205.1971 Search in Google Scholar

Tsiplakou E., Abdullah M.A.M.M., Skliros D., Chatzikonstantinou M., Flemetakis E., Labrou N., Zervas G., (2017). The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. J. Anim. Physiol. Anim. Nutr. (Berl). 101, 275–283. https://doi.org/10.1111/jpn.12521 10.1111/jpn.12521 Search in Google Scholar

Tyrrell H.F., Reid J.T., (1965). Prediction of the energy value of cow’s milk. J. Dairy Sci. 48, 1215–1223. https://doi.org/10.3168/jds.S0022-0302(65)88430-2 10.3168/jds.S0022-0302(65)88430-2 Search in Google Scholar

Ulbricht T.L.V., Southgate D.A.T., (1991). Coronary heart disease: seven dietary factors. Lancet 338, 985–992. https://doi.org/10.1016/0140-6736(91)91846-M 10.1016/0140-6736(91)91846-M Search in Google Scholar

Van Soest P.J., Robertson J.B., Lewis B.A., (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 10.3168/jds.S0022-0302(91)78551-2 Search in Google Scholar

Vlaeminck B., Fievez V., Cabrita A.R.J., Fonseca A.J.M., Dewhurst R.J., (2006). Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 131, 389–417. https://doi.org/10.1016/j.anifeedsci.2006.06.017 10.1016/j.anifeedsci.2006.06.017 Search in Google Scholar

Wallace J.D., Underwood E.J., (1968). The mineral nutrition of livestock. J. Range Manag. 21, 118. https://doi.org/10.2307/3896371 10.2307/3896371 Search in Google Scholar

Wang T., Lee H.G., (2015). Advances in research on cis-9, trans-11 conjugated linoleic acid: a major functional conjugated linoleic acid isomer. Crit. Rev. Food Sci. Nutr. 55, 720–731. https://doi.org/10.1080/10408398.2012.674071 10.1080/10408398.2012.67407124915361 Search in Google Scholar

Wu G., (2018). Principles of animal nutrition, 1st ed. Taylor & Francis Group, Boca Raton, FL. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo