1. bookVolume 21 (2021): Issue 2 (April 2021)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Photoperiod alters the choroid plexus response to LPS-induced acute inflammation in EWES

Published Online: 08 May 2021
Volume & Issue: Volume 21 (2021) - Issue 2 (April 2021)
Page range: 497 - 512
Received: 21 Feb 2020
Accepted: 14 Jul 2020
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

This study determined the influence of photoperiod on the expression of toll-like receptor 2 and 4 (TLR2 and TLR4), interleukin 1□ (IL1B), IL-1 receptor type I (IL1R1) and II (IL1R2), interleukin 6 (IL6), the IL-6 receptor (IL6R) and signal transducer (IL6ST), tumor necrosis factor α (TNF), and TNF□ receptor type I (TNFRSF1A) and II (TNFRSF1B) in the choroid plexus (ChP) of ewes with lipopolysaccharide (LPS)-induced acute inflammation. Under short-days (SD, n = 12, anestrous) and long-days (LD, n = 12, synchronized follicular phase), ewes were treated with saline or LPS. Compared to LD conditions, the ewes under SD were characterized by a greater (P<0.05) area under the curve (AUC) of cortisol in the LPS-treated group and by a lower (P<0.05) AUC of prolactin in the saline-treated group. Under both photoperiods, LPS increased (P<0.05) the expression of all examined genes except for TNFRSF1B (only under SD), TNF and TNFRSF1A (no stimulation), and IL6R (decreased (P<0.05) under SD). The LPS-induced increases in TLR2, TLR4, IL1B and its receptors, IL6 and TNFRSF1B were higher (P<0.05) under SD than LD. TLR4 was positively correlated with IL1B and IL6 in both saline- (r2 = 0.64, P<0.01 and r2 = 0.52, P<0.01) and LPS-treated (r2 = 0.81, P<0.0001 and r2 = 0.51, P<0.001) ewes. IL1B (r2 = 0.56, P<0.01 and r2 = 0.77, P<0.0001) and IL6 (r2 = 0.77, P<0.005 and r2 = 0.35, P<0.05) were positively correlated with TLR2 in saline- and LPS-treated ewes, respectively. This indicates that in ewes, the ChP response to acute systemic inflammation is dependent upon the photoperiod with stronger effects being observed under SD. Our results also suggest that gonadal hormones altering TLR4 signaling events are involved in the photoperiodic modulation of the ChP response to LPS. Further experiments are required to explain the mechanism involved in this phenomenon.

Keywords

Adam C., Findlay P., Miller D. (2006). Blood–brain leptin transport and appetite and reproductive neuroendocrine responses to intracerebroventricular leptin injection in sheep: influence of photoperiod. Endocrinology, 147: 4589–4598. Search in Google Scholar

Akira S., Uematsu S., Takeuchi O. (2006). Pathogen recognition and innate immunity. Cell, 124: 783–801. Search in Google Scholar

Auchtung T.L., Kendall P.E., Salak-Johnson J.L., McFadden T.B., Dahl G.E. (2003). Photoperiod and bromocriptine treatment effects on expression of prolactin receptor mRNA in bovine liver, mammary gland and peripheral blood lymphocytes. J. Endocrinol., 179: 347–356. Search in Google Scholar

Bartlewski P.M., Beard A.P., Rawlings N.C. (1999). The relationship between vaginal impedance and serum concentrations of estradiol and progesterone throughout the sheep estrous cycle. Theriogenology, 51: 813–828. Search in Google Scholar

Bartlewski P.M., Vanderpol J., Beard A.P., Cook S.J., Rawlings N.C. (2000). Ovarian antral follicular dynamics and their associations with peripheral concentrations of gonadotrophins and ovarian steroids in anoestrous Finnish Landrace ewes. Anim. Reprod. Sci., 58: 273–291. Search in Google Scholar

Bilbo S.D., Nelson R.J. (2001). Sex steroid hormones enhance immune function in male and female Siberian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol., 280: R207–R213. Search in Google Scholar

Bochenek J., Skipor J., Kowalewska M., Herman A.P. (2015). The Toll-like receptors mRNA expression profile in the pineal gland of sheep during long and short days. J. Anim. Feed Sci., 24: 208–215. Search in Google Scholar

Boutet P., Sulon J., Closset R., Detilleux J., Beckers J.F., Bureau F., Lekeux P. (2007). Prolactin-induced activation of nuclear factor κB in bovine mammary epithelial cells: role in chronic mastitis. J. Dairy Sci., 90: 55–164. Search in Google Scholar

Calippe B., Douin-Echinard V., Laffargue M., Laurell H., Rana-Poussine V., Pipy B., Guery J.C., Bayard F., Arnal J.F., Gourdy P. (2008). Chronic estradiol administration in vivo promotes the proinflammatory response of macrophages to TLR4 activation: involvement of the phosphatidylinositol 3-kinase pathway. J. Immunol.,180: 7980–7988. Search in Google Scholar

Calippe B., Douin-Echinard V., Delpy L., Laffargue M., Lélu K., Krust A., Pipy B., Bayard F., Arnal J-F., Guéry J-C., Gourdy P. (2010). 17β-estradiol promotes TLR4-triggered proinflammatory mediator production through direct estrogen receptor α signaling in macrophages in vivo. J. Immunol., 185: 1169-1176. Search in Google Scholar

Carrillo-Vico A., Lardone P.J., Álvarez-Sánchez N., Rodríguez-Rodríguez A., Guerrero J.M. (2013). Melatonin: buffering the immune system. Int. J. Mol. Sci., 14: 8638–8683. Search in Google Scholar

Cogé F., Guenin S.P., Fery I., Migaud M., Devavry S., Slugocki C., Legros C., Ouvry C., Cohen W., Renault N., Nosjean O., Malpaux B., Delagrange P., Boutin J.A. (2009). The end of a myth: cloning and characterization of the ovine melatonin MT(2) receptor. Br. J. Pharmacol., 158: 1248–1262. Search in Google Scholar

Engelhardt B., Wolburg-Buchholz K., Wolburg, H. (2001). Involvement of the choroid plexus in central nervous system inflammation. Microsc. Res. Tech., 52: 112–129. Search in Google Scholar

Hasiec M., Szlis M., Górski K., Chmielewska N., Romanowicz K., Misztal T. (2016). Prolactin receptors mRNA expression in selected brain regions of lactating sheep. The 4th Winter Workshop of the Society For Biology of Reproduction, Zakopane, Poland, 3–5.02.2010, p.48. Search in Google Scholar

Herman A.P., Misztal T., Herman A., Tomaszewska – Zaremba D. (2010). Expression of interleukin (IL)-1 □ and IL-1 receptors genes in the hypothalamus of anoestrous ewes after lipopolysaccharide treatment. Reprod. Dom. Anim., 45: e426–e433. Search in Google Scholar

Herman A.P., Skipor J., Krawczynska A., Bochenek J., Wojtulewicz K., Antushevich H., Herman A., Paczesna K., Romanowicz K., Tomaszewska-Zaremba D. (2017). Peripheral inhibitor of AChE, Neostigmine, prevents the inflammatory dependent suppression of GnRH/LH secretion during the follicular phase of the estrous cycle. BioMed Res. Internat., 2017: 6823209. Search in Google Scholar

Herman A.P., Tomaszewska-Zaremba D., Kowalewska M., Szczepkowska A., Oleszkiewicz M., Krawczyńska A., Wójcik M., Antushevich H., Skipor J. (2018). Neostigmine attenuates pro-inflammatory cytokines expression in preoptic area but not choroid plexus during lipopolysaccharide-induced systemic inflammation. Med. Inflam., 2018: 9150207. Search in Google Scholar

Herman A.P., Tomaszewska-Zaremba D. (2010). Effect of endotoxin on the expression of GnRH and GnRHR genes in the hypothalamus and anterior pituitary gland of anestrous ewes. Anim. Reprod. Sci., 120: 105–111. Search in Google Scholar

Hermoso M.A., Matsuguchi T., Smoak K., Cidlowski J.A. (2004). Glucocorticoids and tumor necrosis factor alpha cooperatively regulate toll-like receptor 2 gene expression. Mol. Cell. Biol., 24: 4743–4756. Search in Google Scholar

Homma T., Kato H.A., Hashimoto N., Batchelor J., Yoshikawa M., Imai S., Wakiguchi H., Saito H., Matsumoto K. (2004). Corticosteroid and cytokines synergistically enhance toll-like receptor 2 expression in respiratory epithelial cells. Am. J. Respir. Cell Mol. Biol., 31: 463–469. Search in Google Scholar

Kowalewska M., Herman A.P., Szczepkowska A., Skipor J. (2017a). The effect of melatonin from slow-release implants on basic and TLR-4-mediated gene expression of inflammatory cytokines and their receptors in the choroid plexus in ewes: Res. Vet. Sci., 113: 50–55.10.1016/j.rvsc.2017.09.00328889016 Search in Google Scholar

Kowalewska M., Szczepkowska A., Herman A.P., Pellicer-Rubio M.T., Jałyński M., Skipor J. (2017b). Melatonin from slow-release implants did not influence the gene expression of the lipopolysaccharide receptor complex in the choroid plexus of seasonally anoestrous adult ewes subjected or not to a systemic inflammatory stimulus. Small Rum. Res., 147: 1–7.10.1016/j.smallrumres.2016.11.018 Search in Google Scholar

Krawczyńska A., Antushevich H., Bochenek J., Wojtulewicz K., Pawlina B., Herman A.P., Zięba D.A. (2019a). Photoperiodic conditions as a factor modulating leptin influence on pro-inflammatory cytokines and their receptors gene expression in ewe’s aorta. J. Anim. Feed Sci., 28(2): 128–137.10.22358/jafs/110022/2019 Search in Google Scholar

Krawczyńska A., Herman A.P., Antushevich H., Bochenek J., Wojtulewicz K., Zięba D.A. (2019b). The influence of photoperiod on the action of exogenous leptin on gene expression of proinflammatory cytokines and their receptors in the thoracic perivascular adipose tissue (PVAT) in ewes. Mediators Inflamm., 2019: 7129476.10.1155/2019/7129476687519131780867 Search in Google Scholar

Kunis G., Baruch K., Rosenzweig N., Kertser A., Miller O., Berkutzki T., Schwartz M. (2013). IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain, 136: 3427–3440. Search in Google Scholar

Lincoln G.A., Clarke I.J. (1994). Photoperiodically-induced cycles in the secretion of prolactin in hypothalamo-pituitary disconnected rams: evidence for translation of the melatonin signal in the pituitary gland. J. Neuroendocrinol., 6: 251-260. Search in Google Scholar

Lopez-Meza J.E., Lara-Zárate L., Ochoa-Zarzosa A. (2010). Effects of prolactin on innate immunity of infectious diseases. The Open Neuroendocrinol. J., 3: 175-179. Search in Google Scholar

Marie M., Findlay P.A., Adam C.L. (2001). Daily patterns of plasma leptin in sheep: effects of photoperiod and food intake. J. Endocrinol., 170: 277–286. Search in Google Scholar

Meeker R.B., Williams K., Killebrew, D.A., Hudson L.C. (2012). Cell trafficking through the choroid plexus. Cell Adh. Migr., 6: 390–396. Search in Google Scholar

Navara K.J., Trainor B.C., Nelson R.J. (2007). Photoperiod alters macrophage responsiveness, but not expression of Toll-like receptors in Siberian hamsters. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 148(2): 354–359. Search in Google Scholar

Nelson R.J. (2004). Seasonal immune function and sickness responses. Trends Immunol., 25: 187–192. Search in Google Scholar

Pi X.J., Grattan D.R. (1998). Differential expression of the two forms of prolactin receptor mRNA within microdissected hypothalamic nuclei of the rat. Brain Res. Mol. Brain Res., 59: 1–12. Search in Google Scholar

Prendergast B.J., Baillie S.R., Dhabhar F.S. (2008). Gonadal hormone-dependent and – independent regulation of immune function by photoperiod in Siberian hamsters. Am. J. Physiol. Regul. Comp. Physiol., 294: R384–R392. Search in Google Scholar

Pyter L.M., Samuelsson A.R., Quan N., Nelson R.J. 2005. Photoperiod alters hypothalamic cytokine gene expression and sickness responses following immune challenge in female Siberian hamsters (Phodopus sungorus). Neuroscience, 131: 779–784. Search in Google Scholar

Sakai A., Han J., Cato A.C.B., Akira S., Li J.D. (2004). Glucocorticoids synergize with IL-1 □ to induce TLR2 expression via MAP kinase phosphatase-1-dependentdual inhibition of MAPK JNK and p38 in epithelial cells. BMC Mol. Biol., 4: 2–5. Search in Google Scholar

Santos C.R.A., Duarte A.C., Quintela T., Tomás J., Albuquerque T., Marques F., Almeida Palha J., Gonçalves I. (2017). The choroid plexus as a sex hormone target: Functional implications. Front. Neuroendocrinol., 44: 103–121. Search in Google Scholar

Schwerk C.H., Tenenbaum T., Kim K.S., Schroten H. (2015). The choroid plexus – a multi-role player during infectious diseases of the CNS. Front. Cell. Neurosci., 9: 80. Search in Google Scholar

Skinner D.C., Malpaux B. (1999). High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology, 140: 4399–4405. Search in Google Scholar

Skipor J., Kowalewska M., Szczepkowska A., Majewska A., Misztal T., Jalynski M., Herman A.P., Zabek K. (2017). Plasma and cerebrospinal fluid interleukin-1β during lipopolysaccharide-induced systemic inflammation in ewes implanted or not with slow-release melatonin. J. Anim. Sci. Biotechnol., 8: 76. Search in Google Scholar

Skipor J., Misztal T., Kaczmarek M.M. (2010). Independent changes of thyroid hormones in blood plasma and cerebrospinal fluid after melatonin treatment in ewes. Theriogenology, 74: 236–245. Search in Google Scholar

Skipor J., Młynarczuk J.J., Szczepkowska A., Lagaraine C., Grochowalski A., Guillaume D., Dufourny L., Thiéry J.C. (2012). Photoperiod modulates access of 2,2’,4,4’,5,5’-hexachlorobiphenyl (PCB153) to the brain and its effect on gonadotropin and thyroid hormones in adult ewes. Ecotoxicol. Environ. Safe., 78: 336–343. Search in Google Scholar

Skipor J., Szczepkowska A., Kowalewska M., Herman A.P., Lisiewski P. (2015). Profile of Toll-like receptor mRNA expression in the choroid plexus in adult ewes. Acta Vet. Hung., 63(1): 69–78. Search in Google Scholar

Skipor J., Thiery J.C. (2008). The choroid plexus – cerebrospinal fluid system: undervaluated pathway of neuroendocrine signaling into the brain. Acta Neurobiol. Exp., 68: 417–429. Search in Google Scholar

Stevenson T.J., Prendergast B.J. (2015). Photoperiodic time measurement and seasonal immunological plasticity. Front. Neuroendocrinol., 37: 76–88. Search in Google Scholar

Strzetelski J.A., Brzóska F., Kowalski Z.M., Osięgłowski S. (2014). Feeding Recommendation for Ruminants and Feed Tables (in Polish). Krakow, Poland, National Research Institute of Animal Production. Search in Google Scholar

Szczepkowska A., Skowroński M.T., Kowalewska M., Milewski S., Skipor J. (2018). Effect of melatonin from slow-release implants on aquaporins (AQP1 and AQP4) in the ovine choroid plexus. Czech J. Anim. Sci., 63: 32–42. Search in Google Scholar

Szczepkowska A., Kowalewska M., Skipor J. (2019). Melatonin from slow-release implants upregulates claudin-2 in the ovine choroid plexus. J. Physiol. Pharmacol., 70(2): 249–254. Search in Google Scholar

Takeda K., Kaisho T., Akira S. (2003). Toll-like receptors. Annu. Rev. Immunol., 21: 335–337. Search in Google Scholar

Takeda K., Akira S. (2005). Toll-like receptors in innate immunity. Int. Immunol., 17: 1–14. Search in Google Scholar

Teixeira-Gomes A.P., Harichaux G., Gennetay D., Skipor J., Thiery J.-C., Labas V., Dufourny L. (2015). Photoperiod affects the cerebrospinal fluid proteome: a comparison between short day- and long day-treated ewes. Domest. Anim. Endocrinol., 53: 1–8. Search in Google Scholar

Thiery J.C., Malpaux B. (2003). Seasonal regulation of reproductive activity in sheep: modulation of access of sex steroids to the brain. Ann. N. Y. Acad. Sci., 1007: 169–175. Search in Google Scholar

Thiery J.C., Robel P., Canepa S., Delaleu B., Gayrard V., Picard-Hagen N., Malpaux B. (2003). Passage of progesterone into the brain changes with photoperiod in the ewe. Eur. J. Neurosc., 18: 895–901. Search in Google Scholar

Thiery J.C., Lomet D., Schumacher M., Liere P., Tricoire H., Locatelli A., Delagrange P., Malpaux B. (2006). Concentrations of estradiol in ewe cerebrospinal fluid are modulated by photoperiod through pineal-dependent mechanisms. J. Pineal Res. 41: 306–312. Search in Google Scholar

Thiery J.C., Lomet D., Bougoin S., Malpaux B. (2009). Turnover rate of cerebrospinal fluid in female sheep: changes related to different light-dark cycles. Cerebrospinal Fluid Res., 6: 9. Search in Google Scholar

Tomaszewska-Zaremba D., Haziak K., Tomczyk M., Herman A.P. (2018). Inflammation and LPS-binding protein enable the stimulatory effect of endotoxin on prolactin secretion in the ovine anterior pituitary: ex vivo study. Med. Inflam., 2018: 5427089. Search in Google Scholar

Weems P.W., Goodman R.L., Lehman M.N. (2015). Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters. Front. Neuroendocrinol., 37: 43–51. Search in Google Scholar

Wójcik M., Herman A.P., Zieba D.A., Krawczyńska A. (2020). The impact of photoperiod on the leptin sensitivity and course of inflammation in the anterior pituitary. Int. J. Mol. Sci., 21, 4153.10.3390/ijms21114153731288732532062 Search in Google Scholar

Zhao S., Fernald R.D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol., 12: 1047–1064. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo