1. bookVolume 20 (2020): Issue 4 (October 2020)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Neuregulin 1 (NRG-1) as a Neuronal Active Substance in the Porcine Intrahepatic Nerve Fibers in Physiological Conditions and Under the Influence of Bisphenol a (BPA )

Published Online: 07 Nov 2020
Volume & Issue: Volume 20 (2020) - Issue 4 (October 2020)
Page range: 1339 - 1350
Received: 14 Aug 2019
Accepted: 19 Mar 2020
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Bisphenol A (BPA ) is a substance commonly used in the production of plastics. Previous studies have described that it shows multidirectional harmful effects on the living organism. It is known that BPA causes liver damage, but knowledge about the roles of intrahepatic nerves in these mechanisms is extremely scanty. On the other hand, the exact roles of some neuronal substances in the nervous structures located in the liver still remain unknown. One of such substance, which is allocated a role in the stimulation of cell survival is neuregulin 1 (NRG-1). The aim of the present study was to investigate the distribution of NRG-1-like immunoreactive (NRG-1-LI) nerves in the liver in physiological conditions and under the influence of various doses of BPA using routine double immunofluorescence staining. The results (for the first time) show the presence of NRG-1 in the intrahepatic nerves, and co-localization of NGR-1 with neuronal isoform of nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP). Moreover, it has been observed that high doses of BPA increase the density of NRG-1-LI intrahepatic nerves and the degree of co-localization of NRG-1 with VIP. These observations suggest that NRG-1 located in intrahepatic nerves may play functions in processes connected with liver damage and/or regeneration under the impact of BPA.

Keywords

Akiyoshi H., Gonda T., Terada T.(1998). A comparative histochemical and immunohistochemical study of aminergic, cholinergic and peptidergic innerration in rat, hamster, guinea pig, dog and human livers. Liver, 18: 352–359.Search in Google Scholar

Barberán S., Fraguas S., CebriàF.(2016). The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis. Development, 143: 2089–2102.Search in Google Scholar

Brenneman D.E., Hill J.M., Glazner G.W., Gozes I., Phillips T.W.(1995). Interleukin-1 alpha and vasoactive intestinal peptide: enigmatic regulation of neuronal survival. Int. J. Dev. Neurosci., 13: 187–200.Search in Google Scholar

Castillo C., MalavéC., Martínez J.C., Núñez J., Hernández D., Pasquali F.Villegas G.M., Villegas R.(2006). Neuregulin-1 isoform induces mitogenesis, KCa and Ca2+ currents in PC12 cells. A comparison with sciatic nerve conditioned medium. Brain Res., 1110: 64–75.Search in Google Scholar

Chen D., Kannan K., Tan H., Zheng Z., Feng Y.L., Wu Y., Widelka M.(2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity – a review. Environ. Sci. Technol., 50: 5438–5453.Search in Google Scholar

Cinelli M.A., Do H.T., Miley G.P., Silverman R.B.(2019). Inducible nitric oxide synthase: regulation, structure, and inhibition. Med. Res. Rev., doi: 10.1002/med.21599.10.1002/med.21599690878631192483Search in Google Scholar

Corrales J., Kristofco L.A., Steele W.B., Yates B.S., Breed C.S., Williams E.S., Brooks B.W.(2015). Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose Response, 13: 1559325815598308.Search in Google Scholar

Dejda A., Sokolowska P., Nowak J.Z.(2005). Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol. Rep., 57: 307–320.Search in Google Scholar

EFSA(2006). Opinion of the Scientific Panel on food additives, flavorings, processing aids and materials in contact with food on a request from the Commission to 2,2-bis(4-hydroxyphenyl) propane (Bisphenol A). EFSA J., 428: 1–75.Search in Google Scholar

EFSA(2015). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, Executive summary. EFSA J., 13: 3978.Search in Google Scholar

Elswefy S.E., Abdallah F.R., Atteia H.H., Wahba A.S., Hasan R.A.(2016). Inflammation, oxidative stress and apoptosis cascade implications in bisphenol A-induced liver fibrosis in male rats. Int. J. Exp. Pathol., 97: 369–379.Search in Google Scholar

Fraccaroli L., Alfieri J., Larocca L., Calafat M., Roca V., Lombardi E., Ramhorst R., Leirós C.P.(2009). VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells. Br. J. Pharmacol., 156: 116–126.Search in Google Scholar

Gauthier M.K., Kosciuczyk K., Tapley L., Karimi-Abdolrezaee S.(2013). Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury. Eur. J. Neurosci., 38: 2693–2715.Search in Google Scholar

Grant S., Lutz E.M., Mc Phaden A.R., Wadsworth R.M.(2006). Location and function of VPAC1, VPAC2 and NPR-C receptors in VIP-induced vasodilation of porcine basilar arteries. J. Cereb. Blood Flow. Metab., 26: 58–67.Search in Google Scholar

He Y., Miao M., Wu Ch., Yuan W., Gao E., Zhou Z., Li D.K.(2009). Occupational exposure levels of bisphenol A among Chinese workers. J. Occup. Health., 51: 432–436.Search in Google Scholar

Holmes W.E., Sliwkowski M.X., Akita R.W., Henzel W.J., Lee J., Park J.W., Yansura D., Abadi N., Raab H., Lewis G.D., etal.(1992). Identification of heregulin, a specific activator of p185erbB2. Science, 256: 1205–1210.Search in Google Scholar

Ikeda K., Nakano R., Uraoka M., Nakagawa Y., Koide M., Katsume A., Minamino K., Yamada E., Yamada H., Quertermous T., Matsubara H.(2009). Identification of ARIA regulating endothelial apoptosis and angiogenesis by modulating proteasomal degradation of cIAP-1 and cIAP-2. Proc. Natl. Acad. Sci. USA, 106: 8227–8232.Search in Google Scholar

Kaibori M., Okumura T., Sato K., Nishizawa M., Kon M.(2015). Inducible nitric oxide synthase expression in liver injury: liver protective effects on primary rat hepatocytes. Inflamm. Allergy Drug Targets, 14: 77–83.Search in Google Scholar

Kamimura K., Inoue R., Nagoya T., Sakai N., Goto R., Ko M., Niwa Y., Terai S.(2018). Autonomic nervous system network and liver regeneration. World J. Gastroenterol., 24: 1616–1621.Search in Google Scholar

Kataria H., Alizadeh A., Shahriary G.M., Saboktakin Rizi S., Henrie R., Santhosh K.T., Thliveris J.A., Karimi-Abdolrezaee S.(2018). Neuregulin-1 promotes remyelination and fosters a pro-regenerative inflammatory response in focal demyelinating lesions of the spinal cord. Glia, 66: 538–561.Search in Google Scholar

Kataria H., Alizadeh A., Karimi-Abdolrezaee S.(2019). Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog. Neurobiol., doi: 10.1016/j.pneurobio.2019.101643.10.1016/j.pneurobio.2019.10164331229498Search in Google Scholar

Kim S., Mun G.I., Choi E., Kim M., Jeong J.S., Kang K.W., Jee S., Lim K.M., Lee Y.S.(2018). Submicromolar bisphenol A induces proliferation and DNA damage in human hepatocyte cell lines in vitro and in juvenile rats in vivo. Food Chem. Toxicol., 111: 125–132.Search in Google Scholar

Krishnan A.(2013). Neuregulin-1 type I: a hidden power within Schwann cells for triggering peripheral nerve remyelination. Sci. Signal, 6: jc1.Search in Google Scholar

Law A.J., Shannon Weickert C., Hyde T.M., Kleinman J.E., Harrison P.J.(2004). Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience, 127: 125–136.Search in Google Scholar

Lee S., Kim Y.K., Shin T.Y., Kim S.H.(2013). Neurotoxic effects of bisphenol AF on calciuminduced ROS and MAPKs. Neurotox Res., 23: 49–59.Search in Google Scholar

Licari G., Milne R.W., Somogyi A.A., Sallustio B.C.(2018). Enantioselectivity in the tissue distribution of perhexiline contributes to different effects on hepatic histology and peripheral neural function in rats. Pharmacol. Res. Perspect., 6: e00406.Search in Google Scholar

Majewski M., Bossowska A., Gonkowski S., Wojtkiewicz J., Brouns I., Scheuermann D.W., Adriaensen D., Timmermans J.P.(2002). Neither axotomy nor target-tissue inflammation changes the NOS- or VIP-synthesis rate in distal bowel-projecting neurons of the porcine inferior mesenteric ganglion (IMG). Folia Histochem. Cytobiol., 40: 151–152.Search in Google Scholar

Marmugi A., Ducheix S., Lasserre F., Polizzi A., Paris A., Priymenko N., Bertrand-Michel J., Pineau T., Guillou H., Martin P.G., Mselli-Lakhal L.(2012). Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology, 55: 395–407.Search in Google Scholar

Mc Garr G.W., Fujii N., Muia C.M., Nishiyasu T., Kenny G.P.(2019). Separate and combined effects of KCa and KATP channel blockade with NOS inhibition on cutaneous vasodilation and sweating in older men during heat stress. Am. J. Physiol. Regul. Integr. Comp. Physiol., 317: R113–R120.Search in Google Scholar

Melzer D., Rice N.E., Lewis C., Henley W.E., Galloway T.S.(2010). Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoSOne, 5: e8673.Search in Google Scholar

Melzer D., Osborne N.J., Henley W.E., Cipelli R., Young A., Money C., Mc Cormack P., Luben R., Khaw K.T., Wareham N.J., Galloway T.S.(2012). Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation, 125: 1482–1490.Search in Google Scholar

Metz C.M.(2016) Bisphenol A: understanding the controversy. Workplace Health Saf., 64: 28–36.Search in Google Scholar

Mikolajewska K., Stragierowicz J., Gromadzinska J.(2015). Bisphenol A – application, sources of exposure and potential risks in infants, children and pregnant women. Int. J. Occup. Med. Environ. Health, 28: 209–241.Search in Google Scholar

Morell M., Souza-Moreira L., González-Rey E.(2012). VIP in neurological diseases: more than a neuropeptide. Endocr. Metab. Immune Disord. Drug Targets, 12: 323–332.Search in Google Scholar

Peyre L., Rouimi P., de Sousa G., Héliès-Toussaint C., CarréB., Barcellini S., Chagnon MC., Rahmani R.(2014). Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells: a focus on their potential involvement in non-alcoholic fatty liver disease. Food Chem. Toxicol., 70: 9–18.Search in Google Scholar

Rameshwar P., Gascon P., Oh H.S., Denny T.N., Zhu G., Ganea D.(2002). Vasoactive intestinal peptide (VIP) inhibits the proliferation of bone marrow progenitors through the VPAC1 receptor. Exp Hematol., 30: 1001–1009.Search in Google Scholar

Rochester J.R.(2013). Bisphenol A and human health: a review of the literature. Reprod. Toxicol., 42: 132–155.Search in Google Scholar

Rytel L.(2018). The influence of bisphenol A (BPA) on neuregulin 1-like immunoreactive nerve fibers in the wall of porcine uterus. Int. J. Mol. Sci., 19. doi: 10.3390/ijms19102962.10.3390/ijms19102962621350030274171Search in Google Scholar

Rytel L., Calka J.(2016a). Acetylsalicylic acid-induced changes in the chemical coding of extrinsic sensory neurons supplying the prepyloric area of the porcine stomach. Neurosci. Lett., 617: 218–224.10.1016/j.neulet.2016.02.02926917098Search in Google Scholar

Rytel L., Całka J.(2016b). Neuropeptide profile changes in sensory neurons after partial prepyloric resection in pigs. Ann. Anat., 206: 48–56.10.1016/j.aanat.2016.03.00327142347Search in Google Scholar

Salvany S., Casanovas A., Tarabal O., Piedrafita L., Hernández S., SantaféM., Soto-Bernardini M.C., CalderóJ., Schwab M.H., Esquerda J.E.(2019). Localization and dynamic changes of neuregulin-1 at C-type synaptic boutons in association with motor neuron injury and repair. FASEB J., 33: 7833–7851.Search in Google Scholar

Schaible H.G.(2015). Emerging concepts of pain therapy based on neuronal mechanisms. Handb. Exp. Pharmacol., 227: 1–14.Search in Google Scholar

Soriano S., Ripoll C., Alonso-Magdalena P., Fuentes E., Quesada I., Nadal A., Martinez-Pinna J.(2016). Effects of bisphenol A on ion channels: Experimental evidence and molecular mechanisms. Steroids, 111: 12–20.Search in Google Scholar

Swindle M.M., Makin A., Herron A.J., Clubb F.J.Jr., Frazier K.S.(2012). Swine as models in biomedical research and toxicology testing. Vet. Pathol., 49: 344–356.Search in Google Scholar

Szymanska K., Calka J., Gonkowski S.(2018a). Nitric oxide as an active substance in the enteric neurons of the porcine digestive tract in physiological conditions and under intoxication with bisphenol A (BPA). Nitric Oxide, 80: 1–11.10.1016/j.niox.2018.08.00130086357Search in Google Scholar

Szymanska K., Makowska K., Gonkowski S. (2018 b). The Influence of high and low doses of bisphenol A (BPA) on the enteric nervous system of the porcine ileum. Int. J. Mol. Sci., 19: 917.10.3390/ijms19030917587777829558425Search in Google Scholar

Taylor A.R., Taylor S.B., Koenig J.I.(2012). The involvement of Type II Neuregulin-1 in rat visuospatial learning and memory. Neurosci. Lett., 531: 13–15.Search in Google Scholar

Thoene M., Godlewski J., Rytel L., Dzika E., Bejer-Olenska E., Wojtkiewicz J.(2018). Alterations in porcine intrahepatic sympathetic nerves after bisphenol A administration. Folia Histochem. Cytobiol., 1: 113–121.Search in Google Scholar

Viehover A., Miller R.H., Park S.K., Fischbach G., Vartanian T.(2001). Neuregulin: an oligodendrocyte growth factor absent in active multiple sclerosis lesions. Dev. Neurosci., 23: 377–386.Search in Google Scholar

Wang G., Dai D., Chen X., Yuan L., Zhang A., Lu Y., Zhang P.(2014). Upregulation of neuregulin-1 reverses signs of neuropathic pain in rats. Int. J. Clin. Exp. Pathol., 7: 5916–5921.Search in Google Scholar

Yue W., Song L., Fu G., Li Y., Liu H.(2013). Neuregulin-1β regulates tyrosine kinase receptor expression in cultured dorsal root ganglion neurons with excitotoxicity induced by glutamate. Regul. Pept.,180: 33–42.Search in Google Scholar

Zhang C., Li M., Chen X., Li M.(2015). Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition. Ecotoxicol. Environ. Saf., 118: 126–132.Search in Google Scholar

Zhang Z., Prentiss L., Heitzman D., Stahl R.C., Di Pino F.Jr., Carey D.J.(2006). Neuregulin isoforms in dorsal root ganglion neurons: effects of the cytoplasmic domain on localization and membrane shedding of Nrg-1 type I. J. Neurosci. Res., 84: 1–12.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo