1. bookVolume 20 (2020): Issue 3 (July 2020)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

To What Extent Does Photoperiod Affect Cattle Reproduction? Clinical Perspectives of Melatonin Administration – A Review

Published Online: 01 Aug 2020
Volume & Issue: Volume 20 (2020) - Issue 3 (July 2020)
Page range: 797 - 809
Received: 23 Sep 2019
Accepted: 09 Jan 2020
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The seasonality of reproduction in most mammals is dictated by photoperiod, temperature and nutrition. Melatonin, mainly synthesized in the pineal gland, is generally accepted as the active mediator of photoperiod responses including reproduction. While non-pregnant heifers and cows show continuous sexual activity and are therefore not seasonal breeders, it has been suggested that photo-periodicity may influence the appearance of puberty in heifers and the onset of parturition. Further, the light/dark ratio may influence endocrine patterns of gestation and a shorter light period correlates with the incidence of twin pregnancies. This review considers specific aspects of the effects of photoperiod and melatonin on reproduction in dairy cattle and discusses the clinical applications of melatonin.

Keywords

Abecia J.A., Forcada F., Palacín I. (2008). Effect of exogenous melatonin on the ovary, the embryo and the establishment of pregnancy in sheep. Animal, 2: 399-404.Search in Google Scholar

Abecia J.A., Forcada F., González-Bulnes A. (2012). Hormonal control of reproduction in small ruminants. Anim. Reprod. Sci., 130: 173-179.Search in Google Scholar

Aharoni Y., Brosh A., Ezra E. (2000). Prepartum photoperiod effect on milk yield and composition in dairy cows. J. Dairy Sci., 83: 2779-2781.Search in Google Scholar

Al-Katanani Y.M., Webb D.W., Hansen P.J. (1999). Factors affecting seasonal variation in 90 day non-return rate to first service in lactating Holstein cows in a hot climate. J. Dairy Sci., 82: 2611-2615.Search in Google Scholar

Andreu-Vázquez C., Garcia-Ispierto I., López-Gatius F. (2012a). Photoperiod length and the estrus synchronization protocol used before AI affect the twin pregnancy rate in dairy cattle. Theriogenology, 78: 1209-1216.10.1016/j.theriogenology.2012.05.014Search in Google Scholar

Andreu-Vázquez C., Garcia-Ispierto I., Ganau S., Fricke P.M., López-Gatius F. (2012b). Effects of twinning on the subsequent reproductive performance and productive lifespan of high-producing dairy cows. Theriogenology, 78: 2061-2070.10.1016/j.theriogenology.2012.07.027Search in Google Scholar

Anwar M.J., Muhammad B.Y., Bader A.A., Abdulghani M., Mahmood D., Haider Mohammed. (2015). An insight into the scientific background and future perspectives for the potential uses of melatonin. Egypt. J. Basic Appl. Sci., 2: 139-152.Search in Google Scholar

Aoki M., Kimura K., Suzuki O. (2006). Influence of feeding regime on timing of parturition in beef cattle and the relationship of vaginal temperature to parturition. Anim. Sci. J., 77: 290-299.Search in Google Scholar

Arendt J. (1998). Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev. Reprod., 3: 13-22.Search in Google Scholar

Auldist M.J., Turner S.A., McMahon C.D., Prosser C.G. (2007). Effects of melatonin on the yield and composition of milk from grazing dairy cows in New Zealand. J. Dairy Res., 74: 52-57.Search in Google Scholar

Barash H., Silanikove N., Shamay A., Ezra E. (2001). Interrelationships among ambient temperature, day length and milk yield in dairy cows under a Mediterranean climate. J. Dairy Sci., 84: 2314-2320.Search in Google Scholar

Batıoglu A.S., Sahin U., Gürlek B., Oztürk N., Unsal E. (2012). The efficacy of melatonin administration on oocyte quality. Gynecol. Endocrinol., 28: 91-93.Search in Google Scholar

Bazer F.W., First N.L. (1983). Pregnancy and parturition. J. Anim. Sci., 57(Suppl. 2): 425-460.Search in Google Scholar

Bilbo S.D., Dhabhar F.S., Viswanathan K., Saul A., Yellon S.M., Nelson R.J. (2002). Short day lengths augment stress-induced leukocyte trafficking and stress-induced enhancement of skin immune function. PNAS, 99: 4067-4072.Search in Google Scholar

Bosc M.J., Duchamp G., Rodas E. (1988). Effect of inversion of the light-dark cycle on foaling time during the day in domestic horses. Ann. Zootech., 37: 111-116.Search in Google Scholar

Brand J.M., Frohn C., Cziupka K., Brockmann C., Kirchner H., Luhm J. (2004). Prolactin triggers pro-inflammatory immune responses in peripheral immune cells. Eur. Cytokine Netw., 15: 99-104.Search in Google Scholar

Bubenik G.A. (2008). Thirty four years since the discovery of gastrointestinal melatonin. J. Physiol. Pharmacol., 59: 33-51.Search in Google Scholar

Cardinali D.P., Rosner J.M. (1971). Metabolism of serotonin by the rat retina “in vitro”. J. Neurochem., 18: 1769-1770.Search in Google Scholar

Carrillo-Vico A., Calvo J.R., Abreu P., Lardone P.J., García-Mauriño S., Reiter R.J., Guerrero J.M. (2004). Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J., 18: 537-539.Search in Google Scholar

Cavallari de Castro F., Leal C.L., Roth Z., Hansen P.J. (2019) Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation. Zygote, 27: 180-186.10.1017/S0967199419000236Search in Google Scholar

Cavestany D., El-Whishy A.B., Foote R.H. (1985). Effect of season and high environmental temperature on fertility of Holstein cattle. J. Dairy Sci., 68: 1471-1478.Search in Google Scholar

Claustrat B., Brun J., Chazot G. (2005). The basic physiology and pathophysiology of melatonin. Sleep Med. Rev., 9: 11-24.Search in Google Scholar

Crowe M.A. (2008). Resumption of ovarian cyclicity in post-partum beef and dairy cows. Reprod. Domest. Anim., 43 (Suppl. 5): 20-28.Search in Google Scholar

Dahl G.E., Petitclerc D. (2003). Management of photoperiod in the dairy herd for improved production and health. J. Anim. Sci., 81 (Suppl 3): 11-17.Search in Google Scholar

Dahl G. E., Buchanan B.A., Tucker H.A. (2000). Photoperiodic effects on dairy cattle: A review. J. Dairy Sci., 83: 885-893.Search in Google Scholar

Dahl G.E., Tao S., Thompson I.M. (2012). Lactation biology symposium: effects of photoperiod on mammary gland development and lactation. J. Anim. Sci., 90: 755–760.Search in Google Scholar

Dardente H., Lomet D., Robert V., Pellicer-Rubio M. (2106). Seasonal breeding in mammals: From basic science to applications in back. Theriogenology, 86: 324-332.Search in Google Scholar

De Rensis F., Garcia-Ispierto I., López-Gatius F. (2015). Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows. Theriogenology, 84: 659-666.Search in Google Scholar

De Rensis F., López-Gatius F., García-Ispierto I., Morini G., Scaramuzzi R.J. (2017). Causes of declining fertility in dairy cows during the warm season. Theriogenology, 91: 145-153.Search in Google Scholar

Druckmann R., Druckmann, M.A. (2005). Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 97: 389-396.Search in Google Scholar

Echternkamp S.E., Roberts A.J., Lunstra D.D., Wise T., Spicer L.J. (2004). Ovarian follicular development in cattle selected for twin ovulations and births. J. Anim. Sci., 82: 459-471.Search in Google Scholar

El-Raey M., Geshi M., Somfai T., Kaneda M., Hirako M., Abdel-Ghaffar A.E., Sosa G.A., El-Roos M.E., Nagai T. (2011). Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. Mol. Reprod. Dev., 78: 250-262.Search in Google Scholar

Evans N.M., Hacker R.R. (1989). The chronobiological manipulation of time of calving behaviour of dairy cattle. Can. J. Anim. Sci., 69: 857-863.Search in Google Scholar

Forde N., Beltman M.E., Lonergan P., Diskin M., Roche J.F., Crowe M.A. (2011). Oestrous cycles in Bos Taurus cattle. Anim. Reprod. Sci., 124: 163-169.Search in Google Scholar

Garbayo J.M., Serrano B., Lopez-Gatius F. (2008). Identification of novel pregnancy-associated glycoproteins (PAG) expressed by the peri-implantation conceptus of domestic ruminants. Anim. Reprod. Sci., 103, 120-134.10.1016/j.anireprosci.2006.12.002Search in Google Scholar

García-Ispierto I., López-Gatius F., Bech-Sabat G., Santolaria P., Yániz J.L., Nogareda C., De Rensis F., López-Béjar M. (2007). Climate factors affecting conception rate of high producing dairy cows in northeastern Spain. Theriogenology, 67: 1379-1385.Search in Google Scholar

Garcia-Ispierto I., Lopez-Gatius F., Almeria S., Yániz J., Santolaria P., Serrano B., Bech-Sàbat G., Nogareda C., Sulon J., de Sousa N.M., Beckers J.F. (2009). Factors affecting plasma prolactin concentrations throughout gestation in high producing dairy cows. Domest. Anim. Endocnology, 36: 57-66.Search in Google Scholar

García-Ispierto I., Abdelfatah A., López-Gatius F. (2013). Melatonin treatment at dry-off improves reproductive performance postpartum in high-producing dairy cows under heat stress conditions. Reprod. Domest. Anim., 48: 577-583.Search in Google Scholar

Hansen P.J. (1985). Seasonal modulation of puberty and the post-partum anestrus in cattle: a review. Liv.. Prod. Sci., 12: 309-327.Search in Google Scholar

Hansen P.J. (2019). Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Anim. Reprod., 16: 497-507.Search in Google Scholar

Hansen P.J., Kamwanja L.A., Hauser E.R. (1983). Photoperiod influences age at puberty of heifers. J. Anim. Sci., 57: 985-992.Search in Google Scholar

Hardeland R., Cardinali D.P., Srinivasan V., Spence D.W., Brown G.M., Pandi-Perumal SR. (2011). Melatonin-A pleiotropic, orchestrating regulator molecule. Prog. Neurobiol., 93: 350-384.Search in Google Scholar

Hashiyada Y. (2017). The contribution of efficient production of monozygotic twins to beef cattle breeding. J. Reprod. Dev., 63: 527-538.Search in Google Scholar

Hedlund L.M., Lischko M., Rollag M.D., Niswender G.D. (1977). Melatonin: daily cycle in plasma and cerebrospinal fluid in calves. Science, 195: 686-687.Search in Google Scholar

Itoh M.T., Ishizuka B., Kuribayashi Y., Amemiya A., Sumi Y. (1999). Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol. Human Reprod., 5: 402-408.Search in Google Scholar

Kavita, Phogat J.B., Pandey A.K., Balhara A.K., Ghuman S.S., Gunwant P. (2018). Effects of melatonin supplementation prior to Ovsynch protocol on ovarian activity and conception rates in anestrous Murrah buffalo heifers during out of breeding season. Reprod. Biol., 18: 161-168.Search in Google Scholar

Kooijman R., Hooghe-Peters E.L., Hooghe R. (1996). Prolactin, growth hormone, and insulin-like growth factor-1 in the immune system. Adv. Immunol., 63: 377–454.Search in Google Scholar

Korf H.W. (2018). Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen. Comp. Endocrinol., 258: 236-243.Search in Google Scholar

Kumar A., Mehrotra S., Singh G., Maurya V.P., Narayanan K., Mahla A.S., Chaudhari R.K., Singh M., Soni Y.K., Kumawat B.L., Dabas S.K., Srivastava N. (2016). Supplementation of slow-release melatonin improves recovery of ovarian cyclicity and conception in summer anestrous buffaloes (Bubalus bubalis). Reprod. Domest. Anim., 51: 10-17.Search in Google Scholar

Labèrnia J., López-Gatius F., Santolaria P., Hanzen C., Laurent Y., Houtain J.Y. (1998). Influence of calving season on the interactions among reproductive disorders of dairy cows. Anim. Sci., 67: 387-393.Search in Google Scholar

Lacasse P., Vinet C.M., Petitclerc D. (2014). Effect of prepartum photoperiod and melatonin feeding on milk production and prolactin concentration in dairy heifers and cows. J. Dairy Sci., 97: 3589-3598.Search in Google Scholar

Lanoix D., Beghdadi H., Lafond J., Vaillancourt C. (2008). Human placental trophoblasts synthesize melatonin and express its receptors. J. Pineal Res., 45: 50–60.Search in Google Scholar

Lanoix D., Lacasse A.A., Reiter R.J., Vaillancourt C. (2013). Melatonin: the watchdog of villous trophoblast homeostasis against hypoxia/reoxygenation-induced oxidative stress and apoptosis. Mol. Cell Endocrinol., 38: 35–45.Search in Google Scholar

Le Cozler Y., Lollivier V., Lacasse P., Disenhaus C. (2008). Rearing strategy and optimizing first-calving targets in dairy heifers: a review. Animal, 2: 1393-1404.Search in Google Scholar

Lerner A.B., Case J.D., Takahashi Y., Lee T.H., Mori W. (1958). Isolation of Melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc., 80: 2587.Search in Google Scholar

Lerner A.B., Case J.D., Heinzelmann R.V. (1959). Structure of melatonin. J. Am. Chem. Soc., 81: 6084-6085.Search in Google Scholar

Liggins G.C. (1982). The fetus and birth. In: Reproduction in Mammals: 2. Embryonic and Fetal Development. Austin CR, Short RV. (eds). Cambridge University Press, Cambridge, UK, pp. 115-141.Search in Google Scholar

Lincoln D.W, Porter D.G. (1976). Timing of the photoperiod and the hour of birth in rats. Nature, 260: 780-781.Search in Google Scholar

Lincoln G.A. (1982). The pineal gland. In: Reproduction in Mammals: 3. Hormonal Control of Reproduction. Austin CR, Short RV. (eds). Cambridge University Press, Cambridge, UK, pp. 52-75.Search in Google Scholar

López-Gatius F. (2003). Is fertility declining in dairy cattle? A retrospective study in northeastern Spain. Theriogenology, 60: 89-99.Search in Google Scholar

López-Gatius F., Garcia-Ispierto I. (2010). Ultrasound and endocrine findings that help to assess the risk of late embryo/early foetal loss by non-infectious cause in dairy cattle. Reprod. Domest. Anim., 45(Suppl 3): 15-24.Search in Google Scholar

López-Gatius F., Hunter R.H.F. (2018a). Fertility, fecundity and the creative instinct. J. Gynecol. Obstet. Hum. Reprod., 47: 581-582.10.1016/j.jogoh.2018.09.007Search in Google Scholar

López-Gatius F., Hunter R.H.F. (2018b). Puncture and drainage of the subordinate follicles at timed artificial insemination prevents the risk of twin pregnancy in dairy cows. Reprod. Domest. Anim., 53: 213-216.10.1111/rda.13094Search in Google Scholar

López-Gatius F., Hunter R.H.F. (2019). Preventing twin pregnancies in dairy cattle, turning the odds into reality. Liv. Sci., 229: 1-3.Search in Google Scholar

López-Gatius F., Hunter R.H., Garbayo J.M., Santolaria P., Yaniz J., Serrano B., Ayad A., De Sousa N.M., Beckers J.F. (2007). Plasma concentrations of pregnancy-associated glycoprotein-1 (PAG-1) in high producing dairy cows suffering early fetal loss during the warm season. Theriogenology, 67: 1324-1330.Search in Google Scholar

López-Gatius F., Andreu-Vázquez C., Mur-Novales R., Cabrera V.E., Hunter R.H.F. (2017). The dilemma of twin pregnancies in dairy cattle. A review of practical prospects. Liv. Sci., 197: 121-126.Search in Google Scholar

López-Gatius F., Garcia-Ispierto I., Serrano-Pérez B., Balogh O.G., Gabor G., Hunter R.H.F. (2019). Luteal activity following follicular drainage of subordinate follicles for twin pregnancy prevention in bi-ovular dairy cows. Res. Vet. Sci., 124: 439-443.Search in Google Scholar

Lowman B.G., Hankey M.S., Scott N.A., Deas D.W., Hunter E.A. (1981). Influence of time of feeding on time of parturition in beef cows. Vet. Rec., 109: 557–559.Search in Google Scholar

Makarechian M. (1984). Factors influencing time of parturition in range beef cattle. Can. Vet. J., 25: 450-452.Search in Google Scholar

Maldonado M.D., Murrillo-Cabezas F., Terron M.P., Flores L.J., Tan D.X., Manchester L.C., Reiter R.J. (2007). The potential of melatonin in reducing morbidity-mortality after craniocerebral trauma. J. Pineal Res., 42: 1–11.Search in Google Scholar

Malpaux B., Viguie C., Skinner D.C., Thiery A.C., Pelletier J., Chemineau P. (1996). Seasonal breeding in sheep: mechanism of action of melatonin. Anim. Reprod. Sci., 42: 109-117.Search in Google Scholar

Markusfeld O., Galon N., Ezra E. (1997). Body condition score, health, yield and fertility in dairy cows. Vet. Rec., 141: 67-72.Search in Google Scholar

Marques T.C., da Silva Santos E.C., Diesel T.O., Leme L.O., Martins C.F., Dode M., Alves B.G., Costa F., de Oliveira E.B., Gambarini M.L. (2018). Melatonin reduces apoptotic cells, SOD2 and HSPB1 and improves the in vitro production and quality of bovine blastocysts. Reprod. Domest. Anim., 53: 226-236.Search in Google Scholar

McCord C.P., Allen F.P. (1917). Evidences associating pineal gland function with alterations in pigmentation. J. Exp. Zool., 23: 207-224.Search in Google Scholar

Mercier E., Salisbury G.W. (1947a). Seasonal variations in hours of daylight associated with fertility level of cattle under natural breeding conditions. J. Dairy Sci., 30: 747-756.10.3168/jds.S0022-0302(47)92395-3Search in Google Scholar

Mercier E., Salisbury G.W. (1947b). Fertility level in artificial breeding associated with season, hours of daylight, and the age of cattle. J. Dairy Sci., 30: 817-826.10.3168/jds.S0022-0302(47)92405-3Search in Google Scholar

Milczarek R., Hallmann A., Sokolowska E., Kaletha K., Klimek J. (2010). Melatonin enhances antioxidant action of alpha-tocopherol and ascorbate against NADPH- and iron-dependent lipid peroxidation in human placental mitochondria. J. Pineal Res., 49: 149–155.Search in Google Scholar

Mitchell J.A., Yochim, J.M. (1970). Influence of environmental lighting on duration of pregnancy in the rat. Endocrinology, 87: 472-48010.1210/endo-87-3-4725463818Search in Google Scholar

Mohawk J.A., Green C.B., Takahashi J.S. (2012). Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci., 35: 445-462.Search in Google Scholar

Morini G., Pitella M., Poli A., De Rensis F. (2018). Effect of melatonin administration prior to calving on milk secretion in the next lactation in dairy cows. Veterin. Stan., 49: 85-89.Search in Google Scholar

Nakamura Y., Tamura H., Takayama H., Kato H. (2003). Increased endogenous level of melatonin in preovulatory human follicles does not directly influence progesterone production. Fertil. Steril., 80: 1012–1016.Search in Google Scholar

Newbold J.A., Chapin L.T., Zinn S.A., Tucker H.A. (1991). Effects of photoperiod on mammary development and concentration of hormones in serum of pregnant dairy heifers. J. Dairy Sci., 74: 100-108.Search in Google Scholar

Ott T.L. (2019). Symposium review: Immunological detection of the bovine conceptus during early pregnancy. J. Dairy Sci., 102: 3766-3777.Search in Google Scholar

Pandi-Perumal S.R., Srinivasan V., Maestroni G.J.M., Cardinali D.P., Poeggeler B., Hardeland, R. (2006). Melatonin: nature’s most versatile biological signal? FEBS J., 273: 2813-2838.Search in Google Scholar

Papis K., Poleszczuk O., Wenta-Muchalska E., Modlinski J.A. (2007). Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J. Pineal Res., 43: 321-326.Search in Google Scholar

Peter A.T., Vos P.L.A.M., Ambrose D.J. (2009). Postpartum anestrus in dairy cattle. Theriogenology, 71: 1333-1342.Search in Google Scholar

Peters R.R., Chapin L.T., Emery R.S., Tucker H.A. (1980). Growth and hormonal response of heifers to various photoperiods. J. Anim. Sci., 51: 1148-1153.Search in Google Scholar

Pevet P., Klosen P., Felder-Schmittbuhl M.P. (2017). The hormone melatonin: Animal Studies. Best Pract. Res. Clin. Endocrinol. Metab., 31: 547-559.Search in Google Scholar

Prendergast B.J., Wynne-Edwards K.E.,Yellon S.M., Nelson R.J. (2002). Photorefractoriness of immune function in male Siberian hamsters (Phodopus sungorus). J. Neuroendocrinol., 14: 318-329.Search in Google Scholar

Raghupathy R. (1997). Th-1 immunity is incompatible with successful pregnancy. Immunol. Today, 18: 478-482.Search in Google Scholar

Reiter R.J. (1980). The pineal and its hormones in the control of reproduction in mammals. Endocrine Rev., 1: 109–131.Search in Google Scholar

Reiter R.J. (1991). Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Rev., 12: 151-180.Search in Google Scholar

Reiter R.J., Fraschini F. (1969). Endocrine aspects of the mammalian pineal gland: a review. Neuroendocrinology, 5:219-255.Search in Google Scholar

Rossdale P.D., Short R.V. (1967). The time of foaling of thoroughbred mares. J. Reprod. Fert., 13: 341-343.Search in Google Scholar

Roth Z. (2017). Effect of heat stress on reproduction in dairy cows: insights into the cellular and molecular responses of the oocyte. Annu. Rev. Anim. Biosci., 5: 151-170.Search in Google Scholar

Sakaguchi K., Itoh M.T., Takahashi N., Tarumi W., Ishizuka B. (2013). The rat oocyte synthesizes melatonin. Reprod. Fertil. Dev., 25: 674–682.Search in Google Scholar

Sartori R., Prata A.B., Figueiredo A.C.S., Sanches B.V., Pontes G.C.S., Viana J.H.M., Pontes J.H., Vasconcelos J.L.M., Pereira M.H.C., Dode M.A.N., Monteiro Jr P.L.J., Baruselli P.S. (2016). Update and overview on assisted reproductive technologies (ARTs) in Brazil. Anim. Reprod., 13: 300-312.Search in Google Scholar

Schuller L.K., Burfeind O., Heuwieser W. (2014). Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and hot load indices. Theriogenology, 81: 1050-1057.Search in Google Scholar

Sharpe P.H., Gifford D.R., Flavel P.F., Nottle M.B., Armstrong D.T. (1986). Effect of melatonin on postpartum anestrus in beef cows. Theriogenlogy, 26: 621-629.Search in Google Scholar

Stevenson J.S. (1989). Relationship among climatological variables and hourly distribution of calvings in Holsteins fed during the late afternoon. J. Dairy Sci., 72: 2712-2717.Search in Google Scholar

Svennersten-Sjaunja K., Olsson K. (2005). Endocrinology of milk production. Domest. Anim. Endocrinol., 29: 241-258.Search in Google Scholar

Sweetman W.J. (1950). Artificial breeding in Alaska and the effect of extra light during short winter days. J. Dairy Sci., 33: 391-392.Search in Google Scholar

Takada L., Junior A.M., Mingoti G.Z., Balieiro J.C., Cipolla-Neto J., Coelho L.A. (2012). Effect of melatonin on DNA damage of bovine cumulus cells during in vitro maturation (IVM) and on in vitro embryo development. Res. Vet. Sci., 92: 124-127.Search in Google Scholar

Tamarkin L., Baird C.J., Almeida O.F. (1985). Melatonin: a coordinating signal for mammalian reproduction? Science, 227: 714-720.10.1126/science.38818223881822Search in Google Scholar

Tamura H., Takasaki A., Taketani T., Tanabe M., Kuzuka F., Lee L., Tamura I., Maekawa R., Asada H., YamagataY., Sugino N. (2013). Melatonin as a free radical scavenger in the ovarian follicle. Endocr. J. 60: 1–13.Search in Google Scholar

Wallace R.M., Pohler K.G., Smith M.F., Green J.A. (2015). Placental PAGs: Gene origins, expression patterns, and use as markers of pregnancy. Reproduction, 149: R115-R126.Search in Google Scholar

Wang F., Tian X., Zhou Y., Tan D., Zhu S., Dai Y., Liu G. (2014) Melatonin improves the quality of in vitro produced (IVP) bovine embryos: Implications for blastocyst development, cryotolerance, and modifications of relevant gene expression. PLoS ONE, 9: e93641.10.1371/journal.pone.0093641397358624695534Search in Google Scholar

Wetterberg L. (1999). Melatonin and clinical application. Reprod. Nutr. Dev., 39: 367-382.Search in Google Scholar

Wolfenson D., Roth Z. (2019). Impact of heat stress on cow reproduction and fertility. Anim. Front., 9: 32-38.Search in Google Scholar

Woo M.M.M.,Tai C.J., Kang S.K., Nathwani P.M., Pang S.F., Leung P.C.K. (2001). Direct action of melatonin in human granulosa-luteal cells. J. Clin. Endocrinol. Metab. 86: 4789–4797.Search in Google Scholar

Yarney T.A., Rahnefeld G.W., Parker R.J., Palmer W.M. (1982). Hourly distribution of time of parturition in beef cows. Can. J. Anim. Sci., 62: 597–605.Search in Google Scholar

Zoli A.P., Guibault L.A., Delahaut P., Benitez Ortiz W., Beckers, J.F. (1992). Radioimmunoassay of a bovine pregnancy-associated glycoprotein in serum: Its application for pregnancy diagnosis. Biol. Reprod., 46: 83-92.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo