1. bookVolume 19 (2019): Issue 4 (October 2019)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Genetic Variability in the Loci of FABP4, PPARγ and SCD Genes of Sheep Breeds Raised for Different Purposes

Published Online: 30 Oct 2019
Volume & Issue: Volume 19 (2019) - Issue 4 (October 2019)
Page range: 937 - 954
Received: 05 Dec 2018
Accepted: 26 Apr 2019
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The present study was undertaken to analyse the genetic variation in coding sequences, splicing sites and regulatory sequences of FABP4, PPARγ and SCD genes in five breeds of sheep raised in Poland with different purposes: meat (Suffolk, Ile de France), dairy/prolific (Olkuska sheep, Kołuda) and primitive breeds (Polish Mountain Sheep). To identify genetic variability HRM-PCR, sequencing and PCR-RFLP method were used. Determining the genetic structure of the mentioned genes revealed six SNPs: FABP4 – c.73 + 13A>T and c.348 + 85G>A, PPARγ – c.391 – 66C>T (c.481 – 66C>T) and c.529 + 27G>C (c.619 + 27G>C), SCD – c.*945G>A and c.*1116A>G. For the c.*1116A>G SNP, a potential association with specific sheep body type and breeding purpose was found. In turn, the substitution c.*945G>A located in the regulatory region of the 3'-UTR of the Ovis aries SCD gene was identified for the first time. Based on the relationship demonstrated between sheep body constitution and productive type (dairy, meat) and the polymorphism of the SCD gene, further research is needed. The correlation between c.*1116A>G polymorphism and growth rate, slaughter and carcass value as well as meat quality of lambs needs to be studied in more detail. Such studies may lead to more effective selection processes in sheep breeding in the future.

Keywords

Ariyama H., Kono N., Matsuda S., Inoue T., Arai H. (2010). Decrease in membrane phospholipid unsaturation induces unfolded protein response. J. Biol. Chem., 285: 22027–22035.Search in Google Scholar

Barak Y., Nelson M.C., Ong E.S., Jones Y.Z., Ruiz-Lozano P., Chien K.R., Koder A., Evans R.M. (1999). PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell, 4: 585–595.Search in Google Scholar

Barbiero J.K., Santiago R.M., Persike D.S., da Silva Fernandes M.J., Tonin F.S., da Cunha C., Lucio Boschen S., Lima M.M.S., Vital M.A.B.F. (2014). Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav. Brain Res., 274: 390–399.Search in Google Scholar

Bernard L., Leroux C., Hayes H., Gautier M., Chilliard Y., Martin P. (2001). Characterization of the caprine stearoyl-CoA desaturase gene and its mRNA showing an unusually long 3′-UTR sequence arising from a single exon. Gene, 281: 53–61.Search in Google Scholar

Cao H., Gerhold K., Mayers J.R., Wiest M.M., Watkins S.M., Hotamisligil G.S. (2008). Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell, 134: 933–944.Search in Google Scholar

Corl B.A., Baumgard L.H., Dwyer D.A., Griinari J.M., Phillips B.S., Bauman D.E. (2001). The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem., 12: 622–630.Search in Google Scholar

Dixon J.L., Furukawa S., Ginsberg H.N. (1991). Oleate stimulates secretion of apolipoprotein B-containing lipoproteins from Hep G2 cells by inhibiting early intracellular degradation of apolipoprotein B. J. Biol. Chem., 266: 5080–5086.Search in Google Scholar

Enoch H.G., Catala A., Strittmatter P. (1976). Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem., 251: 5095–5103.Search in Google Scholar

Fan Y.Y., Zan L.S., Fu C.Z., Tian W.Q., Wang H.B., Liu Y.Y., Xin Y.P. (2011). Three novel SNPs in the coding region of PPARγ gene and their associations with meat quality traits in cattle. Mol. Biol. Rep., 38: 131–137.Search in Google Scholar

Fan Y.Y., Fu G.W., Fu C.Z., Zan L.S., Tian W.Q. (2012). A missense mutant of the PPAR-gamma gene associated with carcass and meat quality traits in Chinese cattle breeds. Genet. Mol. Res., 11: 3781–3788.Search in Google Scholar

Ferre P. (2004). The biology of peroxisome proliferators-activated receptors. Diabetes, 53: 43–50.Search in Google Scholar

Fu Y., Luo N., Lopes-Virella M.F. (2000). Oxidized LDL induces the expression of ALBP/aP2 mRNA and protein in human THP-1 macrophages. J. Lipid Res., 41: 2017–2023.Search in Google Scholar

García-Fernández M., Gutiérrez-Gil B., García-Gámez E., Arranz J.J. (2009). Genetic variability of the stearoyl-CoA desaturase gene in sheep. Mol. Cell. Probe., 23, 107–111.10.1016/j.mcp.2009.01.00119418606Search in Google Scholar

Gutiérrez-Juárez R., Pocai A., Mulas C., Ono H., Bhanot S., Monia B.P., Rossetti L. (2006). Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J. Clin. Invest., 116: 1686–1695.Search in Google Scholar

Hanhoff T., Lücke C., Spener F. (2002). Insights into binding of fatty acids by fatty acid binding proteins. Mol. Cell. Biochem., 239: 45–54.Search in Google Scholar

Ibrahim A.H.M., Shehata M.F., Ismail I.M., Gad S.M.A. (2014). Association of fatty acid binding protein 4 (FABP4) polymorphisms with growth and carcass traits of Barki sheep. J. Am. Sci., 10: 10–15.Search in Google Scholar

Jiang Y., Xie M., Chen W., Talbot R., Maddox J.F., Faraut T., Wu C., Muzny D.M., Li Y., Zhang W., Stanton J.A., Brauning R., Barris W.C., Hourlier T., Aken B.L., Searle S.M., Adelson D.L., Bian C., Cam G.R., Chen Y., Cheng S., De Silva U., Dixen K., Dong Y., Fan G., Franklin I.R., Fu S., Fuentes-Utrilla P., Guan R., Highland M.A., Holder M.E., Huang G., Ingham A.B., Jhangiani S.N., Kalra D., Kovar C.L., Lee S.L., Liu W., Liu X., Lu C., Lv T., Mathew T., Mc William S., Menzies M., Pan S., Robelin D., Servin B., Townley D., Wang W., Wei B., White S.N., Yang X., Ye C., Yue Y., Zeng P., Zhou Q., Hansen J.B., Kristiansen K., Gibbs R.A., Flicek P., Warkup C.C., Jones H.E., Oddy V.H., Nicholas F.W., Mc Ewan J.C., Kijas J.W., Wang J., Worley K.C., Archibald A.L., Cockett N., Xu X., Dalrymple B.P. (2014). The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 344: 1168–1173.Search in Google Scholar

Karahashi M., Ishii F., Yamazaki T., Imai K., Mitsumoto A., Kawashima Y., Kudo N. (2013). Up-regulation of stearoyl-CoA desaturase 1 increases liver MUFA content in obese zucker but not Goto-Kakizaki rats. Lipids, 48: 457–467.Search in Google Scholar

Kersten S., Seydoux J., Peters J.M., Gonzalez F.J., Desvergne B., Wahli W. (1999). Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest., 103: 1489–1498.Search in Google Scholar

Koutnikova H., Cock T.A., Watanabe M., Houten S.M., Champy M.F., Dierich A., Auwerx J. (2003). Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. P. Natl. Acad. Sci. USA, 100: 14457–14462.Search in Google Scholar

Legrand P., Catheline D., Fichot M., Lemarchal P. (1997). Inhibiting D9-desaturase activity impairs triacylglycerol secretion in cultured chicken hepatocytes. J. Nutr., 127: 249–256.Search in Google Scholar

Marion-Letellier R., Savoye G., Ghosh S. (2015). Fatty acids, eicosanoids and PPAR gamma. Eur. J. Pharmacol., 795: 44–49.Search in Google Scholar

Matarese V., Bernlohr D.A. (1988). Purification of murine adipocyte lipid-binding protein. Characterization as a fatty acid- and retinoic acid-binding protein. J. Biol. Chem., 263: 14544–14551.Search in Google Scholar

Mishkin S., Stein L., Gatmaitan Z., Arias I.M. (1972). The binding of fatty acids to cytoplasmic proteins: Binding to Z protein in liver and other tissues of the rat. Biochem. Bioph. Res. Co., 47: 997–1003.Search in Google Scholar

Miyazaki M., Kim Y.C., Gray-Keller M.P., Attie A.D., Ntambi J.M. (2000). The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J. Biol. Chem., 275: 30132–30138.Search in Google Scholar

Niżnikowski R. (2011). Sheep breeding, rearing and use (in Polish). Wieś Jutra, Warszawa, pp. 21–32.Search in Google Scholar

Ntambi J.M., Miyazaki M., Dobrzyn A. (2004). Regulation of stearoyl-CoA desaturase expression. Lipids, 39: 1061–1065.Search in Google Scholar

Ockner R.K., Manning J.A., Poppenhausen R.B., Ho W.K. (1972). A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science, 177: 56–58.Search in Google Scholar

Pisanu A., Lecca D., Mulas G., Wardas J., Simbula G., Spiga S., Carta A.R. (2014). Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol. Dis., 71: 280–291.Search in Google Scholar

Rosen E.D., Sarraf P., Troy A.E., Bradwin G., Moore K., Milstone D.S., Spiegelman B.M., Mortensen R.M. (1999). PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell, 4: 611–617.Search in Google Scholar

Sevane N., Armstrong E., Cortés O., Wiener P., Wong R.P., Dunner S. (2013). Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Sci., 94: 328–335.Search in Google Scholar

Sobrado M., Pereira M.P., Ballesteros I., Hurtado O., Fernández-López D., Pradillo J.M., Caso J.R., Vivancos J., Moro M.A. (2009). Synthesis of lipoxin A 4 by 5-lipoxygenase mediates PPARγ-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J. Neurosci., 29: 3875–3884.Search in Google Scholar

Tontonoz P., Hu E., Graves R.A., Budavari AI., Spiegelman B.M. (1994). mPPARgamma2: Tissue-specific regulator of an adipocyte enhancer. Gene. Dev., 8: 1224–1234.Search in Google Scholar

Wei Y., Wang D., Topczewski F., Pagliassotti M.J. (2006). Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol.- Endoc. M., 291: 275–281.Search in Google Scholar

Wei Y., Wang D., Gentile C.L., Pagliassotti M.J. (2009). Reduced endoplasmic reticulum luminal calcium links saturated fatty acid-mediated endoplasmic reticulum stress and cell death in liver cells. Mol. Cell. Biochem., 331: 31–40.Search in Google Scholar

Willson T.M., Brown P.J., Sternbach D.D., Henke B.R. (2000). The PPARs: From orphan receptors to drug discovery. J. Med. Chem., 43: 527–550.Search in Google Scholar

Xu Q.L., Tang G.W., Zhang Q.L., Huang Y.K., Liu Y.X., Quan K., Zhu K.Y., Zhang C.X. (2011). The FABP4 gene polymorphism is associated with meat tenderness in three Chinese native sheep breeds. Czech J. Anim. Sci., 56: 1–6.Search in Google Scholar

Yan W., Zhou H., Luo Y., Hu J., Hickford J.G.H. (2012). Allelic variation in ovine fatty acid-binding protein (FABP4) gene. Mol. Biol. Rep., 39: 10621–10625.Search in Google Scholar

Yeh F.C., Boyle J. (1997). POPGENE, the user-friendly shareware for population genetic analysis. Mol. Biol. Biotechnol., 434: 724–731.Search in Google Scholar

Zhao Y., Calon F., Julien C., Winkler J.W., Petasis N.A., Lukiw W.J., Bazan N.G. (2011). Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secre-tase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS ONE, 6. http://doi.org/10.1371/journal.pone.001581610.1371/journal.pone.0015816301644021246057Open DOISearch in Google Scholar

Zimmerman A.W., Veerkamp J.H. (2002). New insights into the structure and function of fatty acid-binding proteins. Cell. Mol. Life Sci.: CMLS, 59: 1096–1116.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo