[AAFCO (2009). Dog and Cat Food Feeding Protocols. Official Publication, Oxford, IN.]Search in Google Scholar
[AOAC (2007). Official method of analysis of AOAC International. 18th ed. AOAC International, Gaithersburg, MD, USA.]Search in Google Scholar
[Biancarosa I., Liland N.S., Biemans D., Araujo P., Bruckner C.G., Waagbø R. (2018). Uptake of heavy metals and arsenic in black soldier fly (Hermetia illucens) larvae grown on seaweed-enriched media. J. Sci. Food Agric., 98: 2176–2183.]Search in Google Scholar
[Bosch G., Zhang S., Oonincx D.G., Hendriks W.H. (2014). Protein quality of insects as potential ingredients for dog and cat foods. J. Nutr. Sci., 3: e29.]Search in Google Scholar
[Bosch G., Vervoort J.J.M., Hendirks W.H. (2016). In vitro digestibility and fermentability of selected insects for dog foods. Anim. Feed Sci. Technol., 221: 174–184.]Search in Google Scholar
[Charlton A.J., Dickinson M., Wakefield M.E., Fitches E., Kenis M., Han R., Zhu F., Kone N., Grant M., Devic E., Bruggeman G., Prior R., Smith R. (2015). Exploring the chemical safety of fly larvae as a source of protein for animal feed. J. Insects Food Feed, 1: 7–16.]Search in Google Scholar
[Cullere M., Tasoniero G., Giaccone V., Miotti-Scapin R., Claeys E., De Smet S., Dalle Zotte A. (2016). Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal, 10: 1923–1930.]Search in Google Scholar
[Cutrignelli M.I., Messina M., Tulli F., Randazzo B., Olivotto I., Gasco L., Loponte R., Bovera F. (2018). Evaluation of an insect meal of the black soldier fly (Hermetia illucens) as soybean substitute: intestinal morphometry, enzymatic and microbial activity in laying hens. Res Vet. Sci., 117: 209–215.]Search in Google Scholar
[Dabbou S., Gai Ilaria F., Biasato I., Capucchio M.T., Biasibetti E., Dezzutto D., Meneguz M., Plachà I., Gasco L., Schiavone A. (2018). Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol., 9: 49.]Search in Google Scholar
[Józefiak D., Józefiak A., Kierończyk B., Rawski M., Świątkiewicz S., Długosz J., Engberg R.M. (2016). Insects – a natural nutrient source for poultry – a review. Ann. Anim. Sci., 16: 297–313.]Search in Google Scholar
[Khan S., Khan R.U., Sultan A., Khan M., Hayat S.U., Shahid M.S. (2016). Evaluating the suitability of maggot meal as a partial substitute of soya bean on the productive traits, digestibility indices and organoleptic properties of broiler meat. J. Anim. Physiol. Anim. Nutr., 100: 649–656.]Search in Google Scholar
[Khoushab F., Yamabhai M. (2010). Chitin research revisited. Marine Drugs, 8: 1988–2012.]Search in Google Scholar
[Kierończyk B., Rawski M., Pawełczyk P., Różyńska J., Golusik J., Józefiak D. (2018). Do insects smell attractive to dogs? A comparison of dog reactions to insects and commercial feed aromas – a preliminary study. Ann. Anim. Sci., 18: 795–800.]Search in Google Scholar
[Kröger S., Heide C., Zentek J. (2017). Influence of proteins from the Black Soldier Fly (Hermetia illucens) on nutrient digestibility and faecal and immunological parameters in dogs. Proceedings 21st European Society of Veterinary and Comparative Nutrition Congress, Cirencester, UK, pp. 102.]Search in Google Scholar
[Kruger L.P., Nedambale T.L., Scholtz M.M., Webb E.C. (2016). The effect of environmental factors and husbandry practices on stress in goats. Small Rumin. Res., 141: 1–4.]Search in Google Scholar
[Lei X.J., Kim I.H. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Anim. Feed Sci. Technol., 245: 117–125.]Search in Google Scholar
[Leriche I., Fournel S., Chala V. (2017). Assessment of the digestive tolerance in dogs of a new diet based on insects as the protein source. Proceedings 21st European Society of Veterinary and Comparative Nutrition Congress, Cirencester, UK, pp. 103.]Search in Google Scholar
[Li S., Ji H., Zhang B., Tian J., Zhou J., Yu H. (2016). Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 465: 43–52.]Search in Google Scholar
[Liu J.B., Xue P.C., Cao S.C., Liu J., Chen L., Zhang H.F. (2018). Effects of dietary phosphorus concentration and body weight on postileal phosphorus digestion in pigs. Anim. Feed Sci. Technol., 242: 86–94.]Search in Google Scholar
[Longvah T., Mangthya K., Ramulu P. (2011). Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem., 128: 400–403.]Search in Google Scholar
[Marono S., Loponte R., Lombardi P., Vassalotti G, Pero M.E., Russo F., Gasco L., Parisi G., Piccolo G., Nizza S., Di Meo C., Attia Y.A., Bovera F. (2017). Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poultry Sci., 96: 1783–1790.]Search in Google Scholar
[Martínez-Sánchez A., Magaña C., Saloña M., Rojo S. (2011). First record of Hermetia illucens (Diptera: Stratiomyidae) on human corpses in Iberian Peninsula. Forensic Sci. Int., 206: e76–e78.]Search in Google Scholar
[McCusker S., Buff P.R., Yu Z., Fascetti A.J. (2014). Amino acid content of selected plant, algae and insect species: a search for alternative protein sources for use in pet foods. J. Nutr. Sci. 3: e39.]Search in Google Scholar
[Min B., Barry T., Attwood G., McNabb W. (2003). The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci. Technol., 106: 3–19.]Search in Google Scholar
[Mwaniki Z., Neijat M., Kiarie E. (2018). Egg production and quality responses of adding up to 7.5% defatted black soldier fly larvae meal in a corn-soybean meal diet fed to shaver white leghorns from wk 19 to 27 of age. Poultry Sci., 97: 2829–2835.]Search in Google Scholar
[Ngo D.H., Kim S.K. (2014). Antioxidant effects of chitin, chitosan and their derivatives. Adv. Food Nutr. Res., 73: 15–31.]Search in Google Scholar
[Nguyen T.T.X., Tomberlin J.K., Vanlaerhoven S. (2015). Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol., 44: 406–410.]Search in Google Scholar
[Renna M., Schiavone A., Gai F., Dabbou S., Lussiana C., Malfatto V., Prearo M., Capucchio M.T., Biasato I., Biasibetti E., De Marco M., Brugiapaglia A., Zoccarato I., Gasco L. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol., 8: 57.]Search in Google Scholar
[Schiavone A., Cullere M., Marco M.D., Meneguz M., Biasato I., Bergagna S., Dezzutto D., Gai F., Dabbou S., Gasco L., Zotte A.D. (2017). Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci., 16: 93–100.]Search in Google Scholar
[Secci G., Bovera F., Nizza S., Baronti N. (2018). Quality of eggs from Lohmann Brown classic laying hens fed black soldier fly meal as substitute for soya bean. Animal, 8: 1–7.]Search in Google Scholar
[Spranghers T., Michiels J., Vrancx J., Ovyn A., Eeckhout M., De Clercq P., De Smet S. (2018). Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol., 235: 33–42.]Search in Google Scholar
[St-Hilaire S., Sheppard C., Tomberlin J.K., Irving S., Newton L., McGuire M.A., Mosley E.E., Hardy R.W., Sealey W. (2007). Fly prepupae as a feed stuff for rainbow trout, Oncorhynchus mykiss. J. World Aquacult. Soc., 38: 59–67.]Search in Google Scholar
[Štukelj M., Toplak I., Svete A.N. (2013). Blood antioxidant enzymes (SOD, GPX), biochemical and haematological parameters in pigs naturally infected with porcine reproductive and respiratory syndrome virus. Pol. J. Vet. Sci., 16: 369–376.]Search in Google Scholar
[Veldkamp T., Bosch G. (2015). Insects: a protein-rich feed ingredient in pig and poultry diets. Anim. Front., 5: 45–50.]Search in Google Scholar
[Veldkamp T., Van Duinkerken G., van Huis A., Lakemond C.M.M., Ottevanger E., Bosch G., van Boekel T. (2012). Insects as a sustainable feed ingredient in pig and poultry diets – a feasibility study. Report 638. Wageningen UR Livestock Research, Wageningen, The Netherlands.]Search in Google Scholar
[Waititu S.M., Yin F., Patterson R., Rodriguez-Lecompte J.C., Nyachoti C.M. (2016). Short-term effect of supplemental yeast extract without or with feed enzymes on growth performance, immune status and gut structure of weaned pigs challenged with Escherichia coli lipopolysaccharide. J. Anim. Sci. Biotechnol., 7: 64.]Search in Google Scholar
[Xu X., Chen S., Wang H., Tu Z., Wang S., Zhu H., Wang C., Zhu J., Liu Y. (2018 a). Medium-chain TAG improve intestinal integrity by suppressing toll-like receptor 4, nucleotide-binding oligomerisation domain proteins and necroptosis signalling in weanling piglets challenged with lipopolysaccharide. Br. J. Nutr., 119: 1019–1028.10.1017/S000711451800003X29508680]Search in Google Scholar
[Xu X., Wang X., Wu H., Zhu H., Liu C., Hou Y., Dai B., Liu X., Liu Y. (2018 b). Glycine relieves intestinal injury by maintaining mTOR signaling and suppressing AMPK, TLR4, and NOD signaling in weaned piglets after lipopolysaccharide challenge. Int. J. Mol. Sci., 17: 1980.10.3390/ijms19071980607367629986455]Search in Google Scholar
[Yu H.T., Ding X.L., Li N., Zhang X.Y., Zeng X.F., Wang S., Liu H.B., Wang Y.M., Jia H.M., Qiao S.Y. (2017). Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs. J. Anim. Sci., 95: 5064–5076.]Search in Google Scholar