Open Access

Determining Influence of Culture Media and Dose-Dependent Supplementation with Basic Fibroblast Growth Factor on the Ex Vivo Proliferative Activity of Domestic Cat Dermal Fibroblasts in Terms of Their Suitability for Cell Banking and Somatic Cell Cloning of Felids


Cite

Abdian N., Ghasemi-Dehkordi P., Hashemzadeh-Chaleshtori M., Ganji-Ar-jenaki M., Doosti A., Amiri B. (2015). Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF). Cell Tissue Bank, 16: 487–495.10.1007/s10561-015-9494-9Search in Google Scholar

Agrawal H., Selokar N.L., Saini M., Singh M.K., Chauhan M.S., Palta P., Singla S.K., Manik R.S. (2018). m-carboxycinnamic acid bishydroxamide improves developmental competence, reduces apoptosis and alters epigenetic status and gene expression pattern in cloned buffalo (Bubalus bubalis) embryos. Reprod. Domest. Anim., 53: 986–996.10.1111/rda.13198Search in Google Scholar

Aoued H.S., Singh M. (2015). Recovery of fibroblast-like cells after 160 days of postmortem storage of goat skin tissues in refrigerated media. J. Veterinar. Sci. Technol., 6: 236.Search in Google Scholar

Balin A.K., Fisher A.J., Anzelone M., Leong I., Allen R.G. (2002). Effects of establishing cell cultures and cell culture conditions on the proliferative life span of human fibroblasts isolated from different tissues and donors of different ages. Exp. Cell Res., 274: 275–287.10.1006/excr.2002.5485Search in Google Scholar

Barros F.R.de,Goissis M.D., Caetano H.V., Paula-Lopes F.F., Peres M.A., Assumpção M.E., Visintin J.A. (2010). Serum starvation and full confluency for cell cycle synchronization of domestic cat (Felis catus) foetal fibroblasts. Reprod. Domest. Anim., 45: 38–41.10.1111/j.1439-0531.2008.01201.xSearch in Google Scholar

Do L., Wittayarat M., Terazono T., Sato Y., Taniguchi M., Tanihara F., Takemoto T., Kazuki Y., Kazuki K., Oshimura M., Otoi T. (2016). Effects of duration of electric pulse on in vitro development of cloned cat embryos with human artificial chromosome vector. Reprod. Domest. Anim., 51: 1039–104310.1111/rda.12766Search in Google Scholar

Gamal A.Y., Mailhot J.M., Garnick J.J., Newhouse R., Sharawy M.M. (1998). Human periodontal ligament fibroblast response to PDGF-BB and IGF-1 application on tetracycline HCI conditioned root surfaces. J. Clin Periodontol., 25: 404–412.10.1111/j.1600-051X.1998.tb02463.xSearch in Google Scholar

Giraldo A.M., Hylan D.A., Ballard C.B., Purpera M.N., Vaught T.D., Lynn J.W., Godke R.A., Bondioli K.R. (2008). Effect of epigenetic modifications of donor somatic cells on the subsequent chromatin remodeling of cloned bovine embryos. Biol. Reprod., 78: 832–840.10.1095/biolreprod.107.066662Search in Google Scholar

Gómez M.C., Pope C.E. (2015). Cloning endangered felids by interspecies somatic cell nuclear transfer. Methods Mol. Biol., 1330: 133–152.10.1007/978-1-4939-2848-4_13Search in Google Scholar

Gómez M.C., Pope C.E., Kutner R.H., Ricks D.M., Lyons L.A., Ruhe M., Dumas C., Lyons J., López M., Dresser B.L., Reiser J. (2008). Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning Stem Cells, 10: 469–483.10.1089/clo.2008.0021Search in Google Scholar

Gómez M.C., Biancardi M.N., Jenkins J.A., Dumas C., Galiguis J., Wang G., Earle Pope C. (2012). Scriptaid and 5-aza-2'deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies black-footed cat cloned embryos. Reprod. Domest. Anim., 47 (Suppl 6): 130–135.10.1111/rda.12027Search in Google Scholar

Gospodarowicz D., Moran J.S. (1975). Mitogenic effect of fibroblast growth factor on early passage cultures of human and murine fibroblasts. J. Cell Biol., 66: 451–457.10.1083/jcb.66.2.451Search in Google Scholar

Gospodarowicz D., Weseman J., Moran J.S., Lindstrom J. (1976). Effect of fibroblast growth factor on the division and fusion of bovine myoblasts. J. Cell Biol., 70: 395–405.10.1083/jcb.70.2.395Search in Google Scholar

Gouko R., Onuma M., Eitsuka T., Katayama M., Takahashi K., Nakagawa K., Inoue-Murayama M., Kiyono T., Fukuda T. (2018). Efficient immortalization of cells derived from critically endangered Tsushima leopard cat (Prionailurus bengalensis euptilurus) with expression of mutant CDK4, Cyclin D1, and telomerase reverse transcriptase. Cytotechnology, 70: 1619–1630.10.1007/s10616-018-0254-0Search in Google Scholar

Guan W.J., Liu C.Q., Li C.Y., Liu D., Zhang W.X., Ma Y.H. (2010). Establishment and cryo-preservation of a fibroblast cell line derived from Bengal tiger (Panthera tigris tigris). Cryo Letters, 31: 130–138.Search in Google Scholar

Hu F., Wang X., Liang G., Lv L., Zhu Y., Sun B., Xiao Z. (2013). Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cell Reprogram., 15: 224–232.10.1089/cell.2012.0077Search in Google Scholar

Imsoonthornruksa S., Lorthongpanich C., Sangmalee A., Srirattana K., Laowtammathron C., Tunwattana W., Somsa W., Ketudat-Cairns M., Parnpai R. (2010). Abnormalities in the transcription of reprogramming genes related to global epigenetic events of cloned endangered felid embryos. Reprod. Fert. Develop., 22: 613–624.10.1071/RD09108Search in Google Scholar

Imsoonthornruksa S., Sangmalee A., Srirattana K., Parnpai R., Ketudat-Cairns M. (2012). Development of intergeneric and intrageneric somatic cell nuclear transfer (SCNT) cat embryos and the determination of telomere length in cloned offspring. Cell. Reprogram., 14: 79–87.10.1089/cell.2011.0054Search in Google Scholar

Ishii T. (2014). Human iPS cell-derived germ cells: current status and clinical potential. J. Clin. Med., 3:1064–1083.10.3390/jcm3041064Search in Google Scholar

Jin L., Guo Q., Zhang G.L., Xing X.X., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2018). The histone deacetylase inhibitor, CI994, improves nuclear re-programming and in vitro developmental potential of cloned pig embryos. Cell. Reprogram., 20: 205–213.10.1089/cell.2018.0001Search in Google Scholar

Kanazawa S., Fujiwara T., Matsuzaki S., Shingaki K., Taniguchi M., Miyata S., Tohyama M., Sakai Y., Yano K., Hosokawa K., Kubo T. (2010). bFGF regulates PI3-kinase-Rac1-JNK pathway and promotes fibroblast migration in wound healing. PLoS One, 5(8): e12228.10.1371/journal.pone.0012228Search in Google Scholar

Kim G.A., Oh H.J., Kim M.J., Jo Y.K., Choi J., Kim J.W., Lee T.H., Lee B.C. (2015). Effect of primary culture medium type for culture of canine fibroblasts on production of cloned dogs. Theriogenology, 84: 524–530.10.1016/j.theriogenology.2015.04.007Search in Google Scholar

Lee H.S., Yu X.F., Bang J.I., Cho S.J., Deb G.K., Kim B.W., Kong I.K. (2010). Enhanced histone acetylation in somatic cells induced by a histone deacetylase inhibitor improved inter-generic cloned leopard cat blastocysts. Theriogenology, 74: 1439–1449.10.1016/j.theriogenology.2010.06.016Search in Google Scholar

Liu C., Guo Y., Guan W., Ma Y., Zhang H.H., Tang X. (2008). Establishment and biological characteristics of Luxi cattle fibroblast bank. Tissue Cell, 40: 417–424.10.1016/j.tice.2008.04.005Search in Google Scholar

Makino T., Jinnin M., Muchemwa F.C., Fukushima S., Kogushi-Nishi H., Mori-ya C., Igata T., Fujisawa A., Johno T., Ihn H. (2010). Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. Br. J. Dermatol., 162: 717–723.10.1111/j.1365-2133.2009.09581.xSearch in Google Scholar

Mehrabani D., Tajedini M., Tamadon A., Dianatpour M., Parvin F., Zare S., Rahmanifar F. (2016). Establishment, characterization and cryopreservation of Fars native goat fetal fibroblast cell lines. Asian Pacific J. Reprod., 5: 247–252.10.1016/j.apjr.2016.04.013Search in Google Scholar

Miyamoto K., Hoshino Y., Minami N., Yamada M., Imai H. (2007). Effects of synchronization of donor cell cycle on embryonic development and DNA synthesis in porcine nuclear transfer embryos. J. Reprod. Dev., 53: 237–246.10.1262/jrd.18085Search in Google Scholar

Moro L.N., Jarazo J., Buemo C., Hiriart M.I., Sestelo A., Salamone D.F. (2015). Tiger, Bengal and domestic cat embryos produced by homospecific and interspecific zona-free nuclear transfer. Reprod. Domest. Anim., 50: 849–857.10.1111/rda.12593Search in Google Scholar

Moulavi F., Hosseini S.M., Tanhaie-Vash N., Ostadhosseini S., Hosseini S.H., Hajinasrollah M., Asghari M.H., Gourabi H., Shahverdi A., Vosough A.D., Nasr-Esfahani M.H. (2017). Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes. Theriogenology, 90: 197–203.10.1016/j.theriogenology.2016.11.023Search in Google Scholar

Opiela J., Samiec M., Bochenek M., Lipiński D., Romanek J., Wilczek P. (2013). DNA aneuploidy in porcine bone marrow-derived mesenchymal stem cells undergoing osteogenic and adipogenic in vitro differentiation. Cell. Reprogram., 15: 425–434.10.1089/cell.2012.0099Search in Google Scholar

Opiela J., Samiec M., Romanek J. (2017). In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology, 97: 27–33.10.1016/j.theriogenology.2017.04.022Search in Google Scholar

Powell A.M., Talbot N.C., Wells K.D., Kerr D.E., Pursel V.G., Wall R.J. (2004). Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biol. Reprod., 71: 210–216.10.1095/biolreprod.104.027193Search in Google Scholar

Roth V. (2006). Doubling Time Computing. Avaible from: http://www.doubling-time.com/compute.phpSearch in Google Scholar

Samiec M. (2005 a). The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci., 14: 393–422.10.22358/jafs/67034/2005Search in Google Scholar

SamiecM. (2005 b). The role of mitochondrial genome (mtDNA) in somatic and embryo cloning of mammals. A review. J. Anim. Feed Sci., 14: 213–233.10.22358/jafs/67008/2005Search in Google Scholar

Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed Res. Int., 2015: 814686.10.1155/2015/814686Search in Google Scholar

Samiec M., Skrzyszowska M. (2005). Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique: a review. Czech J. Anim. Sci., 50: 185–195.10.17221/4142-CJASSearch in Google Scholar

Samiec M., Skrzyszowska M. (2010 a). Preimplantation developmental capability of cloned pig embryos derived from different types of nuclear donor somatic cells. Ann. Anim. Sci., 10: 385–398.Search in Google Scholar

Samiec M., Skrzyszowska M. (2010 b). The use of different methods of oocyte activation for generation of porcine fibroblast cell nuclear-transferred embryos. Ann. Anim. Sci. 10: 399–411.Search in Google Scholar

Samiec M., SkrzyszowskaM. (2012 a). Roscovitine is a novel agent that can be used for the activation of porcine oocytes reconstructed with adult cutaneous or fetal fibroblast cell nuclei. Theriogenology, 78: 1855–1867.10.1016/j.theriogenology.2012.06.02922979963Search in Google Scholar

Samiec M., SkrzyszowskaM. (2012 b). High developmental capability of porcine cloned embryos following trichostatin A-dependent epigenomic transformation during in vitro maturation of oocytes pre-exposed to R-roscovitine. Anim. Sci. Pap. Rep., 30: 383–393.Search in Google Scholar

Samiec M., Skrzyszowska M. (2013). Assessment of in vitro developmental capacity of porcine nuclear-transferred embryos reconstituted with cumulus oophorus cells undergoing vital diagnostics for apoptosis detection. Ann. Anim. Sci., 13: 513–529.10.2478/aoas-2013-0035Search in Google Scholar

Samiec M., Skrzyszowska M. (2014). Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod. Biol., 14: 128–139.10.1016/j.repbio.2013.12.006Search in Google Scholar

Samiec M., Skrzyszowska M. (2018 a). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci., 21: 217–227.Search in Google Scholar

Samiec M., SkrzyszowskaM. (2018 b). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638.10.2478/aoas-2018-0015Search in Google Scholar

Samiec M., Skrzyszowska M., Lipiński D. (2012). Pseudophysiological transcomplementary activation of reconstructed oocytes as a highly efficient method used for producing nuclear-transferred pig embryos originating from transgenic foetal fibroblast cells. Pol. J. Vet. Sci., 15: 509–516.10.2478/v10181-012-0078-3Search in Google Scholar

Samiec M., Skrzyszowska M., BochenekM. (2013 a). In vitro development of porcine nuclear-transferred embryos derived from fibroblast cells analysed cytometrically for apoptosis incidence and accuracy of cell cycle synchronization at the G0/G1 stages. Ann. Anim. Sci., 13: 735–752.10.2478/aoas-2013-0049Search in Google Scholar

Samiec M., Skrzyszowska M., OpielaJ. (2013 b). Creation of cloned pig embryos using contact-inhibited or serum-starved fibroblast cells analysed intra vitam for apoptosis occurrence. Ann. Anim. Sci., 13: 275–293.10.2478/aoas-2013-0009Search in Google Scholar

Santos M.L.T., Borges A.A., Queiroz Neta L.B., Santos M.V.O., Oliveira M.F., Silva A.R., Pereira A.F. (2016). In vitro culture of somatic cells derived from ear tissue of collared peccary (Pecari tajacu Linnaeus, 1758) in medium with different requirements. Pesq. Vet. Bras., 36: 1194–1202.10.1590/s0100-736x2016001200010Search in Google Scholar

Siengdee P., Klinhom S., Thitaram C., Nganvongpanit K. (2018). Isolation and culture of primary adult skin fibroblasts from the Asian elephant (Elephas maximus). Peer J., 6: e4302. doi: 10.7717/peerj.4302.10.7717/peerj.4302578688329379691Open DOISearch in Google Scholar

Silvério K.G., Martinez A.E., Rossa C.Jr. (2007). Effects of basic fibroblast growth factor on density and morphology of fibroblasts grown on root surfaces with or without conditioning with tetracycline or EDTA. J. Oral Sci., 49: 213–220.10.2334/josnusd.49.213Search in Google Scholar

Singh M., Sharma A.K. (2011). Outgrowth of fibroblast cells from goat skin explants in three different culture media and the establishment of cell lines. In Vitro Cell Dev. Biol. Anim., 47: 83–88.10.1007/s11626-010-9373-4Search in Google Scholar

Skrzyszowska M., Kątska L., Ryńska B., Kania G., Smorag Z., Pieńkowski M. (2002). In vitro developmental competence of domestic cat embryos after somatic cloning: a preliminary report. Theriogenology, 58: 1615–1621.10.1016/S0093-691X(02)01047-6Search in Google Scholar

Song J., Hua S., Song K., Zhang Y. (2007). Culture, characteristics and chromosome complement of Siberian tiger fibroblasts for nuclear transfer. In Vitro Cell Dev. Biol. Anim., 43: 203–209.10.1007/s11626-007-9043-3Search in Google Scholar

Veraguas D., Gallegos P.F., Castro F.O., Rodriguez-Alvarez L. (2017). Cell cycle synchronization and analysis of apoptosis-related gene in skin fibroblasts from domestic cat (Felis silvestris catus) and kodkod (Leopardus guigna). Reprod. Domest. Anim., 52: 881–889.10.1111/rda.12994Search in Google Scholar

Wang H., Cui W., Meng C., Zhang J., Li Y., Qian Y., Xing G., Zhao D., Cao S. (2018). MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig. Cell. Reprogram., 20: 55–65.10.1089/cell.2017.0023Search in Google Scholar

Wang M., Gao Y., Qu P., Qing S., Qiao F., Zhang Y., Mager J., Wang Y. (2017). Spermborne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci. Rep., 7: 13403.10.1038/s41598-017-13899-8Search in Google Scholar

Wani N.A., Vettical B.S., Hong S.B. (2017). First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS One, 12 (5): e0177800.10.1371/journal.pone.0177800Search in Google Scholar

Wen D.C., Yang C.X., Cheng Y., Li J.S., Liu Z.H., Sun Q.Y., Zhang J.X., Lei L., Wu Y.Q., Kou Z.H., Chen D.Y. (2003). Comparison of developmental capacity for intra- and interspecies cloned cat (Felis catus) embryos. Mol. Reprod. Dev., 66: 38–45.10.1002/mrd.10333Search in Google Scholar

Wittayarat M., Sato Y., Do L.T., Morita Y., Chatdarong K., Techakumphu M., Taniguchi M., OtoiT. (2013 a). Histone deacetylase inhibitor improves the development and acetylation levels of cat-cow interspecies cloned embryos. Cell. Reprogram., 15: 301–308.10.1089/cell.2012.0094372594423790014Search in Google Scholar

Wittayarat M., Thongphakdee A., Saikhun K., Chatdarong K., Otoi T., Techa-kumphuM. (2013 b). Cell cycle synchronization of skin fibroblast cells in four species of family Felidae. Reprod. Domest. Anim., 48: 305–310.10.1111/j.1439-0531.2012.02149.x22834557Search in Google Scholar

Xiong H., He X., Zhang W., Li C., Li M., Guan W., Ma Y. (2014). Establishment and characterization of a fibroblast line from Duroc. Pakistan J. Zool., 46: 363–369.Search in Google Scholar

Yin X.J., Lee H.S., Yu X.F., Choi E., Koo B.C., Kwon M.S., Lee Y.S., Cho S.J., Jin G.Z., Kim L.H., Shin H.D., Kim T., Kim N.H., KongI.K. (2008 a). Generation of cloned transgenic cats expressing red fluorescence protein. Biol. Reprod., 78: 425–431.10.1095/biolreprod.107.06518518003942Search in Google Scholar

Yin X.J., Lee H.S., Yu X.F., Kim L.H., Shin H.D., Cho S.J., Choi E.G., KongI.K. (2008 b). Production of second-generation cloned cats by somatic cell nuclear transfer. Theriogenology, 69: 1001–1006.10.1016/j.theriogenology.2008.01.017712714018358524Search in Google Scholar

Zainuddin A., Chua K.H., Abdul Rahim N., Makpol S. (2010). Effect of experimental treatment on GAPDH mRNA expression as a housekeeping gene in human diploid fibroblasts. BMC Mol. Biol., 11: 59.10.1186/1471-2199-11-59Search in Google Scholar

Zhang Y., Qu P., Ma X., Qiao F., Ma Y., Qing S., Zhang Y., Wang Y., Cui W. (2018). Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One, 13(5): e0196785.10.1371/journal.pone.0196785Search in Google Scholar

Zhu Y., Hu H.L., Li P., Yang S., Zhang W., Ding H., Tian R.H., Ning Y., Zhang L.L., Guo X.Z., Shi Z.P., Li Z., He Z. (2012). Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study. Asian J. Androl., 14: 574–589.10.1038/aja.2012.3Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine