1. bookVolume 15 (2015): Issue 1 (January 2015)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Diabetes Mellitus in Cats Relevant to Human Type 2 Diabetes – Current Knowledge and New Treatment Strategies – A Review

Published Online: 03 Mar 2015
Volume & Issue: Volume 15 (2015) - Issue 1 (January 2015)
Page range: 19 - 30
Received: 10 Jun 2014
Accepted: 21 Jul 2014
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Diabetes mellitus is one of the most commonly encountered endocrinopathies in domestic cats. Numerous studies have shown that feline diabetes mellitus (FDM) closely resembles human type 2 diabetes mellitus (T2DM), a common pathogenesis including insulin resistance and impaired insulin secretion as well as the same risk factors. This similarity provides ground for better understanding of their pathogenesis as well as more efficient management, novel treatment and prevention options for the disease in both species. Recently, modulation of the incretin system has become a new area of active investigations by several pharmaceutical companies. Concerning the role of incretins in glucose homeostasis, therapies based on activating the incretin axis have proved highly effective in treating T2DM. Glucagon-like peptide 1 (GLP-1) receptors agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors have been recently developed agents for diabetes therapy. Furthermore, studies in healthy cats demonstrated that those drugs stimulate insulin secretion and lower glucagon levels. There is a need of additional clinical evaluation of action of the drugs in cats suffering from FDM. Moreover, studies in cats may contribute to the development of knowledge on the use of new drugs in treatment of human T2DM because cats are an excellent model for the study of diabetes.

Keywords

Appleton D.J.. Rand J.S., S u n v o 1 d G.D. (2001). Insulin sensitivity decreases with obesity', and lean cats with low insulin sensitivity are at greatest risk of glucose intolerance with weight gain. J. Feline Med. Surg., 3: 211-288.Search in Google Scholar

Butler AE., Janson J.. Bonner-Weir S., Ritzel R, Rizza RA, Butler P.C. (2003). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52: 102-110.Search in Google Scholar

Callegari C., Mercuriali E., Hafner M, Coppola L.M., Guazzetti S., Lutz T.A., R e u s c h C.E.. Z i n i E. (2013). Survival time and prognostic factors in cats with newly diagnosed diabetes mellitus: 114 cases (2000-2009). J. Am. Vet. Med. Assoc., 243: 91-95.Search in Google Scholar

Caney S.M (2013). Pancreatitis and diabetes in cats. Vet. Clin. North. Am. Small. Anim Pract.. 43: 303-317.Search in Google Scholar

Colditz G. A, Willett W.C., RotnitzkyA,Manson J.E. (1995). Weight gain as a risk factor for clinical diabetes in women. Ann. Intern. Med.. 122: 481-486.Search in Google Scholar

Crenshaw' KL.. Peterson M.E. (1996). Pretreatment clinical and laboratory evaluation of cats with diabetes mellitus: 104 cases (1992-1994). J. Am. Vet. Med. Assoc., 209: 943-949.Search in Google Scholar

Davidson J. A (2013). The placement of DPP 4 inhibitors in clinical practice recommendations for the treatment of type 2 diabetes. Endocr. Pract.. 19: 1050-1061.Search in Google Scholar

Donath MY., Gross D.J., Cerasi E., Kaiser N. (1999). Hvperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammonas obesus during development of diabetes. Diabetes. 48: 738-744.Search in Google Scholar

Donath MY.,Ehses J.A.,Maedler K,Schumann D.M,Ellingsgaard H.,Eppler E., Reinecke M. (2005). Mechanisms of beta-cell death in type 2 diabetes. Diabetes. 54: S108-S113.Search in Google Scholar

Drucker D.J. (2006). The biology of incretin homiones. Cell. Metab.. 3: 153-165.Search in Google Scholar

Drucker D.J., N a u c k MA. (2006). The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 368: 1696-1705.Search in Google Scholar

Ellingsgaard H., Hauselmann I., Schuler B., Habib A.M., Baggio LI., Meier D.T., Eppler E., Bouzakri K, Wueest S., Muller Y.D., Hansen A.M, Reinecke M,Konrad D.,Gassmann M,Reimann F.,Halban P.A,Gromada J.,Druck- e r D.J., Gribbe F.M., Ehses J.A, Donath MY. (2011) Interleukin-6 enhances insulin se- cretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med.. 17: 1481-489.Search in Google Scholar

Ezcurra M., Reimann F., Gribble F.M, Emery E. (2013). Molecular mechanisms of incretin hormone secretion. Curr. Opin. Pharmacol.. 13: 922-927.Search in Google Scholar

Furrer D.. Kaufmann K. Tschuor F., Reusch C.E., Lutz TA. (2010). The dipeptidyl peptidase IV inhibitor NVP-DPP728 reduces plasma glucagon concentration in cats. Vet. J.. 183: 355-357.Search in Google Scholar

Gilor C.,Graves TK,Gilor S.,Ridge TK,Rick M(2011 a).TheGLP-l mimeticexenatide potentiates insulin secretion in healthy cats. Domest. Anim Endocrinol., 41: 42-49. 10.1016/j.domaniend.2011.03.00121645806Search in Google Scholar

Gilor C., Graves T.K. Gilor S.. Ridge T.K, Weng RY., Dos sin O. (2011 b). The incretin effect in cats: comparison between oral glucose, lipids, and amino acids. Domest. Anim. Endo- crinol., 40:205-212.10.1016/j.domaniend.2011.01.00221397435Search in Google Scholar

Goossens M.M., Nelson RW.. Feldman E.C., Griffey S.M. (1998). Responses to insulin treatment and survival in 104 cats with diabetes mellitus (1985-1995). J. Vet. Intern. Med.. 12: 1-6.Search in Google Scholar

Greco D.S. (2012). Feline acromegaly. Top. Companion Anim Med.. 27: 31-35.Search in Google Scholar

Hall D.G., Kelley L.C., Gray M.L., Glaus T.M (1997). Lymphocytic inflammation of pancre- atic islets in a diabetic cat. J. Vet. Diagn Invest., 9: 98-100.Search in Google Scholar

Henson M.S.. O'Brien TD. (2006). Feline models of type 2 diabetes mellitus. ILAR J., 47: 234-242.Search in Google Scholar

Hoen g M (2012). The cat as a model for human obesity and diabetes. J. Diabetes. Sei. TechnoL. 6: 525-533.Search in Google Scholar

Hoenig M, Thomaseth K. Brandao J., Waldron M, Ferguson D.C. (2006). Assess- ment and mathematical modeling of glucose turnover and insulin sensitivity in lean and obese cats. Domest. Anim Endocrin.. 31: 373-389.Search in Google Scholar

Hoenig M, Thomaseth K, Waldron M, Ferguson D.C. (2007). Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss. Am. J. Physiol. Regul. Integr. Comp. Physiol., 292: R227-2634.Search in Google Scholar

Hoenig M., Jordan E.T., Fergus on D.C., de Vries F. (2010). Oral glucose leads to a differ- ential response in glucose, insulin, and GLP-1 in lean versus obese cats. Domest. Anim. Endocrin.. 38: 95-102.Search in Google Scholar

Hotamisligil G.S., Arner P., Caro J.F., Atkinson RL., Spiegelman B.M (1995). In- creased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resis- tance. J. Clin. Invest., 95: 2409-2415.Search in Google Scholar

Imamura S.,Hirai K.Hirai A. (2013). The glucagon-like peptide-1 receptor agonist, liraglutide. attenuates the progression of overt diabetic nephropathy in type 2 diabetic patients. Tohoku J. Exp. Med., 231: 57-61.Search in Google Scholar

Inzucchi S.E., S h e r w i n RS. (2005). The prevention of type 2 diabetes mellitus. Endocrinol. Me- tab. Clin. North. Am., 34: 199-219.Search in Google Scholar

Johnson K.H.. Hayden D.W., O'Brien T.D., Westermark P. (1986). Animal model of hu- man disease: spontaneous diabetes mellitus-islet amyloid complex in adult cats. Am. J. Pathol.. 125: 416-419.Search in Google Scholar

Johnson KH., O 'Brien T.D., Jordan K, Westermark P. (1989). Impaired glucose toler- ance is associated with increased islet amyloid polypeptide (IAPP) immunoreactivity in pancreatic beta cells. Am J. Pathol., 135: 245-250.Search in Google Scholar

Kirby M.,Yu DM., O ’ Connor S.,Gorrel M.D. (2010). Inhibitor selectivity in the clinical ap- plication of dipeptidyl peptidase-4 inhibition. Clin. Sei., 118: 31-41.Search in Google Scholar

Kraus M.S., C a 1 v e r t C. A, Jacobs G.J., B r o w n J. (1997). Feline diabetes mellitus: a retrospec- tive mortality study of 55 cats (1982-1994). J. Am. Anim. Hosp. Assoc., 33: 107-111.Search in Google Scholar

Lederer R,Rand J.S., Jonsson N.N.,Hughes I.P.,Morton J.M (2009). Frequency of fe- line diabetes mellitus and breed predisposition in domestic cats in Australia. Vet. J., 179: 254-258.Search in Google Scholar

Lee Y.S., Jun H.S. (2013). Anti-diabetic action of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism, doi: 10.1016/j.metabol.2013.09.010.10.1016/j.metabol.2013.09.01024140094Search in Google Scholar

Link KR.Allio I.,Rand J.S.,Eppler E. (2013). The effect of experimentally induced chronic hyperglycaemia on serum and pancreatic insulin, pancreatic islet IGF-I and plasma and urinary ketones in the domestic cat (Felis felis). Gen. Comp. EndocrinoL. 188: 269-281.Search in Google Scholar

Lutz T.A., Rand J.S. (1995). Pathogenesis of feline diabetes mellitus. Vet. Clin. North. Am Small. Anim Pract., 25: 527-552.Search in Google Scholar

Maedler K, Spinas G.A., Lehmann R, Sergeev P., Weber M, Fontana A., Kai- ser N.. Donath M.Y. (2001). Glucose induced beta-cell apoptosis via upregulation of the Fas- receptor in human islets. Diabetes, 50: 1683-1690.Search in Google Scholar

Maedler K,Oberholzer J., Bur eher P., Spinas G.A., Donath MY. (2003). Monounsat- urated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes, 52: 726-733. Search in Google Scholar

Maedler K, Sergeev P., Ehses JA., Mathe Z., Bosco D., Berney T.. Dayer J.M., R e i n e c k e M.. H a 1 b a n PA.. Donath M.Y. (2004). Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-lbeta in human islets. Proc. Natl. Acad. Sei. USA, 101: 8138-8143.Search in Google Scholar

McCann T.M., Simpson KE.. Shaw D.J., Butt JA., Gunn-Moore DA. (2007). Feline diabetes mellitus in the UK: the prevalence within an insured cat population and a questionnaire- based putative risk factor analysis. J. Feline Med. Surg.. 9: 289-299.Search in Google Scholar

Miller C., Bartges J., Cornelius L., Norton N., Barton M (1998). Tumor necrosis fac- tor-alpha levels in adipose tissue of lean and obese cats. J. Nutr.. 128: 2751S-2752S.Search in Google Scholar

Mori A, Lee P., Yamashita T., Nishimaki Y., Oda H., Saeki K, Miki Y., Mizu- tani R.Ishioka K.Honjo T.,Arai T.,Sako T. (2009). Effect of glimepiride and nateglin- ide on serum insulin and glucose concentration in healthy cats. Vet. Res. C'ommun., 33: 957-970.Search in Google Scholar

Nack R.. DeClue AE. (2014). In cats with newly diagnosted diabetes mellitus, use of a near-eu- glycemic management paradigm improves remission rate over a traditional paradigm Vet. Q.. 25: 1-5.Search in Google Scholar

Nelson RW., Feldman E.C.,Ford SI., Roe me r O.P (1993). Effect of an orally administered sulfonylurea, glipizide, for treatment of diabetes mellitus in cats. J. Am Vet. Med. Assoc., 203: 821-827.Search in Google Scholar

Nelson R, Spann D.. Elliott D., Brondos A, Vulliet R (2004). Evaluation of the oral antihvperglycemic drug metformin in normal and diabetic cats. J. Vet. Intern. Med., 18: 18-24.Search in Google Scholar

Niessen S.J. (2010). Feline acromegaly: an essential differential diagnosis for the difficult diabetic. J. Feline Med. Surg., 12: 15-23.Search in Google Scholar

O'Brien T.D. (2002). Pathogenesis of feline diabetes mellitus. Mol. Cell. Endocrinol.. 197: 213-219.Search in Google Scholar

Os to M, Zini E., Reusch C.E., Lutz TA (2013). Diabetes from humans to cats. Gen. Comp. Endocrinol., 182: 48-53.Search in Google Scholar

Palus K. Rytel L., C a 1 k a J. (2013). Familial diseases in Chinese Shar-pei dogs associated with elevated levels of IL-6 (in Polish). Med. Weter., 69: 471-474.Search in Google Scholar

Perley M.J., Kipnis D.M. (1967). Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J. Clin. Invest., 46: 1954-1962.Search in Google Scholar

Porte D. (1991). Beta-cells in type II diabetes mellitus. Diabetes. 40: 166-180.Search in Google Scholar

Prahl Al., Guptill L.. G lie km an N.W., Tetrick M., Glickman L.T. (2007). Time trends and risk factors for diabetes mellitus in cats presented to veterinary teaching hospitals. J. Feline Med. Surg., 9: 351-358.Search in Google Scholar

Rand J.S. (1999). Current understanding of feline diabetes mellitus: part 1. pathogenesis. J. Feline Med. Surg., 1: 143-153.Search in Google Scholar

Rand J.S. (2013). Pathogenesis of feline diabetes. Vet. Clin. North. Am. Small. Anim Pract.. 43: 221-231.Search in Google Scholar

Rand J.S., Fleeman L.M. Farrow H.A., Appleton D.J., Lederer R (2004). Canine and feline diabetes mellitus: nature or nurture? J. Nutr., 134: 2072S-2080S.Search in Google Scholar

Reusch C.E., Padrutt I. (2013). New incretin hormonal therapies in humans relevant to diabetic cats. Vet. Clin. N. Am.-Small. 43: 417-433.Search in Google Scholar

Reusch C.E., Kley S.. Casella M, Nelson RW., Mol J., Zapf J. (2006). Measurements of growth hormone and insulin-like growth factor 1 in cats with diabetes mellitus. Vet. Rec.. 158: 195-200.Search in Google Scholar

Reusch C.E..Hafner M.,Tschuor F.,Lutz T.A.,Zini E. (2011). Diabetes remission in cats: a review. Schweiz. Arch. Tieiheilkd., 153: 495-500.Search in Google Scholar

Richardson V.R, Smith KA. Carter A.M. (2013). Adipose tissue inflammation: Feed- ing the development of type 2 diabetes mellitus. Immunobiology, <http://dx.doi.org/> 10.1016/j. imbio.2013.05.00210.1016/j.imbio.2013.05.00223816302Search in Google Scholar

Sallander M, Eli as son J., Hedhammar A. (2012). Prevalence and risk factors for the devel- opment of diabetes mellitus in Swedish cats. Acta Vet. Scand., 54, p. 61.10.1186/1751-0147-54-61353759723114390Search in Google Scholar

Slingerland L.L,Fazilova V.V.,Plantinga E.A.,Kooistra H.S..Beynen AC. (2009). Indoor confinement and physical inactivity rather than the proportion of dry food are risk factors in the development of feline type 2 diabetes mellitus. Vet. J., 179: 247-253. Search in Google Scholar

Spellman C. W. (2010). Pathophysiology of type 2 diabetes: targeting islet cell dysfunction. J. Am. Osteopath. Assoc., 110: S2-7.Search in Google Scholar

Suzuki D., Toyoda M., Kimura M., Miyauchi M, Yamamoto N., Sato H.T Tana- ka E.. Kuriyama Y., Miyatake R. Abe M, Umezono T., Fukagavva M (2013). Effects of liraglutide. a human glucagon-like peptide-1 analogue, on body weight, body fat area and body fat-related markers in patients with type 2 diabetes mellitus. Intern Med., 52: 1029-1034.Search in Google Scholar

Trayhurn P.. Wood I.S. (2004). Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr., 92: 347-355.Search in Google Scholar

Wild S., Roglic G., Green A., Sicree R, King R (2004). Global prevalence of diabetes. Diabetes Care, 27: 1047-1053.Search in Google Scholar

Winzell M.S., Ahr e n B. (2007). G-protein-coupled receptors and islet function - implications for treatment of type 2 diabetes. Pharmacol. Ther., 116: 437-448.Search in Google Scholar

Zini E., Hafner M, Osto M., Franchini M, Ackermann M, Lutz T.A., Reusch C.E. (2010). Predictors of clinical remission in cats with diabetes mellitus. J. Vet. Intern Med.. 24: 1314-1321. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo