1. bookVolume 6 (2021): Issue 2 (July 2021)
Journal Details
License
Format
Journal
eISSN
2444-8656
First Published
01 Jan 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

Applications of the extended rational sine-cosine and sinh-cosh techniques to some nonlinear complex models arising in mathematical physics

Published Online: 06 Apr 2021
Volume & Issue: Volume 6 (2021) - Issue 2 (July 2021)
Page range: 19 - 30
Received: 23 Sep 2020
Accepted: 31 Jan 2021
Journal Details
License
Format
Journal
eISSN
2444-8656
First Published
01 Jan 2016
Publication timeframe
2 times per year
Languages
English
Abstract

This study presents the applications of the extended rational sine-cosine/sinh-cosh schemes to the Klein-Gordon-Zakharov equations and the (2+1)-dimensional Maccari system. Various wave solutions such as singular periodic, periodic wave, topological, topological kink-type, dark and singular soliton solutions are successfully revealed. To display the physical features of the reported solutions, we use some appropriate choice of parameters in plotting the 3D, 2D, and contour graphs of some attained solutions.

Keywords

Introduction

Nonlinear evolution equations (NLEEs) may be utilized to explain diverse complex nonlinear aspects arising in different areas of nonlinear sciences, like quantum mechanics, mechanics, chemistry, optic fiber, engineering, photonics and so on. Exploring the wave solutions to the NLEEs play a vital role in explaining the physical features of these equations, that makes it of paramount important to secure their solutions. To find the exact solutions, particularly solitary wave solutions to NLEEs in mathematical physics plays a significant role in the field of soliton theory. The physical problems are usually mathematical modelled by NLEEs and thus it is vital to investigate the exact solutions of NLEEs. These solutions of NLEEs provide better evidence about its physical structures. These equations represent mathematical models of complex physical phenomena that are utilized in various branches of nonlinear sciences. A variety of an efficient and reliable computational techniques have been designed to explore such kind of problems [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39].

This work is aimed at investigating two complex nonlinear models, namely; the Klein-Gordon-Zakharov equation [42,43] and the (2+1)-dimensional Maccari system [44] by using the newly extended rational sine/cosine and sinh/cosh methods. We report various wave solutions that may be helpful in explaining the physical meaning of different nonlinear complex models arising the fields of engineering, applied sciences, mathematical physics, etc..

The Klein-Gordon-Zakharov equations is given by [42] χttχxx+χ+λψχ=0,ψttψxxσ(|χ|2)xx=0, \matrix{ {{\chi _{tt}} - {\chi _{xx}} + \chi + \lambda \psi \chi } & = & {0,} \cr {{\psi _{tt}} - {\psi _{xx}} - \sigma {{(|\chi {|^2})}_{xx}}} & = & {0,} \cr } where χ is a complex-valued function and stands for the fast time scale component of electric field raised by electrons, and ψ is a real valued-function which stands for the deviation of ion density from its equilibrium, λ and σ are two nonzero real constants. The Klein-Gordon-Zakharov system portrays the interaction between the Langmuir wave and the ion acoustic wave in a high frequency plasma [43].

The (2+1)-dimensional nonlinear complex coupled Maccari system is given by [44] iχt+χxx+χψ=0,ψt+ψy+(|χ|2)x=0. \matrix{ {i{\chi _t} + {\chi _{xx}} + \chi \psi } & = & {0,} \cr {{\psi _t} + {\psi _y} + {{(|\chi {|^2})}_x}} & = & {0.} \cr } Eq. (2) describes the motion of the isolated waves, localized in a small part of space, in different fields such as hydrodynamic, plasma physics, nonlinear optics etc [44].

The remaining part of the paper is organised as follows: In section 2, the overview of the applied methods is presented. In section 3, we present the applications of the methods presented in section 2. In section 4, we present the graphical representation of the reported results in section 3. We give the conclusion of this study in section 5.

Overview of the Methods

This section discusses the steps involved in the extended rational sine/cosine and sinh/cosh methods.

Consider the general form of nonlinear partial differential equation (NPDE) F(χxχ2,χxx,χxt,)=0, F\left( {{\chi _x}{\chi ^2},\;{\chi _{xx}},\;{\chi _{xt}}, \cdots } \right) = 0, where χ = χ(x,t) is an unknown function and F is a polynomial in χ and its partial derivatives. Suppose that χ(x,y,t)=Θ(η),η=xkt, \chi (x,y,t) = \Theta (\eta ),\quad \quad \eta = x - kt, Then, by using (4), Eq. (3) can be turned into the following nonlinear ordinary differential equation (NODE) w.r.t. η: G(Θ,Θ,Θ,)=0. G\left( {\Theta ,\;\Theta ',\;\Theta '', \cdots } \right) = 0.

Extended rational sine/cosine method

Suppose that the solution of Eq. (5) can be written in the following forms: Θ(η)=a0sin(μη)a2+a1cos(μη),cos(μη)a2a1, \Theta (\eta ) = {{{a_0}\sin (\mu \eta )} \over {{a_2} + {a_1}\cos (\mu \eta )}},\quad \cos (\mu \eta ) \ne - {{{a_2}} \over {{a_1}}}, Θ(η)=a0cos(μη)a2+a1sin(μη),sin(μη)a2a1, \Theta (\eta ) = {{{a_0}\cos (\mu \eta )} \over {{a_2} + {a_1}\sin (\mu \eta )}},\quad \sin (\mu \eta ) \ne - {{{a_2}} \over {{a_1}}}, where a0, a1 and a2 are parameters to be found in terms of the other parameters. The non-zero constant μ is the wave number. The derivatives of the predicted solutions are Θ(η)=a0μ[cos(μη)a2+a1][a2+a1sin(μη)]2, \Theta '(\eta ) = {{{a_0}\mu \left[ {\cos (\mu \eta ){a_2} + {a_1}} \right]} \over {{{\left[ {{a_2} + {a_1}\sin (\mu \eta )} \right]}^2}}}, \ Θ(η)=a0μ2sin(μη)[2a12+a1cos(μη)a2a22][a2+a1cos(μη)]3, \Theta ''(\eta ) = {{{a_0}{\mu ^2}\sin (\mu \eta )\left[ {2a_1^2 + {a_1}\cos (\mu \eta ){a_2} - a_2^2} \right]} \over {{{\left[ {{a_2} + {a_1}\cos (\mu \eta )} \right]}^3}}}, in the first form and Θ(η)=a0μ[sin(μη)a2+a1][a2+a1sin(μη)]2, \Theta '(\eta ) = - {{{a_0}\mu \left[ {\sin (\mu \eta ){a_2} + {a_1}} \right]} \over {{{\left[ {{a_2} + {a_1}\sin (\mu \eta )} \right]}^2}}}, \ Θ(η)=a0μ2cos(ηξ)[2a12+a1sin(ηξ)a2a22][a2+a1sin(ηξ)]3. \Theta ''(\eta ) = {{{a_0}{\mu ^2}\cos (\eta \xi )\left[ {2a_1^2 + {a_1}\sin (\eta \xi ){a_2} - a_2^2} \right]} \over {{{\left[ {{a_2} + {a_1}\sin (\eta \xi )} \right]}^3}}}. in the second form.

We substitute Eqs. (8) or (11) into Eq. (5) and get a polynomial in trigonometric functions. Collecting the coefficients of the same power of cosm(μη) or sinm(μη) and equating each summation to zero, we get a set of algebraic equations. We solve the system of equations to get the solutions of the equation into consideration.

Extended rational sinh/cosh method

Assume that the solutions of Eq. (5) may be written in the forms Θ(η)=a0sinh(μη)a2+a1cosh(μη),cosh(μη)a2a1, \Theta (\eta ) = {{{a_0}\sinh (\mu \eta )} \over {{a_2} + {a_1}\cosh (\mu \eta )}},\quad \cosh (\mu \eta ) \ne - {{{a_2}} \over {{a_1}}}, Θ(η)=a0cosh(μη)a2+a1sinh(μη),sinh(μη)a2a1, \Theta (\eta ) = {{{a_0}\cosh (\mu \eta )} \over {{a_2} + {a_1}\sinh (\mu \eta )}},\quad \sinh (\mu \eta ) \ne - {{{a_2}} \over {{a_1}}}, where a0, a1 and a2 are parameters to be found in terms of the other parameters. The non-zero constant μ is the wave number. The derivatives of the predicted solutions are Θ(η)=a0μ[cosh(μη)a2+a1][a2+a1sinh(μη)]2, \Theta '(\eta ) = {{{a_0}\mu \left[ {\cosh (\mu \eta ){a_2} + {a_1}} \right]} \over {{{\left[ {{a_2} + {a_1}\sinh (\mu \eta )} \right]}^2}}}, \ Θ(η)=a0μ2sinh(μη)[2a12+a1cosh(μη)a2a22][a2+a1cosh(μη)]3, \Theta ''(\eta ) = - {{{a_0}{\mu ^2}\sinh (\mu \eta )\left[ {2a_1^2 + {a_1}\cosh (\mu \eta ){a_2} - a_2^2} \right]} \over {{{\left[ {{a_2} + {a_1}\cosh (\mu \eta )} \right]}^3}}}, in the first form and Θ(η)=a0μ[sinh(μη)a2a1][a2+a1sinh(μη)]2, \Theta '(\eta ) = {{{a_0}\mu \left[ {\sinh (\mu \eta ){a_2} - {a_1}} \right]} \over {{{\left[ {{a_2} + {a_1}\sinh (\mu \eta )} \right]}^2}}}, \ Θ(η)=a0μ2cosh(μη)[2a12a1sinh(μη)a2+a22][a2+a1sinh(μη)]3. \Theta ''(\eta ) = {{{a_0}{\mu ^2}\cosh (\mu \eta )\left[ {2a_1^2 - {a_1}\sinh (\mu \eta ){a_2} + a_2^2} \right]} \over {{{\left[ {{a_2} + {a_1}\sinh (\mu \eta )} \right]}^3}}}. in the second form.

We substitute Eqs. (16) or (19) into the reduced form of the governing equation obtained above in Eq. (5). Collecting the coefficients of the coshm(μη) and/or sinhm(μη) of the same power, and equating each summation to zero, we get a set of algebraic equations. We solve the system of equations to get the solutions of the equation into consideration.

Applications

In this section, we present the applications of the extended rational sine/cosine and sinh/cosh methods to the Klein-Gordon-Zakharov equations, and the (2+1)-dimensional Maccari system.

Application to Eq. (1)

Here, we apply the methods the Klein-Gordon-Zakharov equations.

Consider the wave transformation χ=Θ(η)eiθ,ψ=Φ(η),η=xkt,θ=px+rt. \chi = \Theta (\eta ){e^{i\theta }},\;\;\psi = \Phi (\eta ),\;\;\eta = x - kt,\;\;\theta = px + rt. Placing Eq. (22) in Eq. (1), provides: (k21)(1+p2r2)Θ+λσΘ3+μ2(k21)2Θ=0 ({k^2} - 1)(1 + {p^2} - {r^2})\Theta + \lambda \sigma {\Theta ^3} + {\mu ^2}{({k^2} - 1)^2}{\Theta ^{''}} = 0 from the real part, and k=pr k = - {p \over r} from the imaginary part.

Suppose that Eq. (23) have the solutions of the form Θ(η)=a0sin(μη)a2+a1cos(μη) \Theta (\eta ) = {{{a_0}\sin (\mu \eta )} \over {{a_2} + {a_1}\cos (\mu \eta )}} Placing Eq. (24) and its derivatives into Eq. (23) gives a polynomial in power of trigonometric functions. Collecting the coefficients of the same power of cos(μη), and equating each summation to zero, provides a system of equations. Solving this system of equations, provides

Class-1: When a0=a1p42p2r2+p2+r4r2λrσ,a2=0,μ=p2r2+r4r22p2r2, {a_0} = {{{a_1}\sqrt {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} } \over {\sqrt \lambda r\sqrt \sigma }},\;{a_2} = 0,\;\mu = - {{\sqrt { - {p^2}{r^2} + {r^4} - {r^2}} } \over {\sqrt 2 \sqrt {{p^2} - {r^2}} }}, we get χ1a(x,t)=p42p2r2+p2+r4r2ei(px+rt)tan(|p2r2+r4r2|(ptr+x)2|p2r2|)λrσ, {\chi _{1a}}(x,t) = - {{\sqrt {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} {e^{i(px + rt)}}\tan \left( {{{\sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt 2 \sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\sqrt \lambda r\sqrt \sigma }}, ψ1a(x,t)=(p42p2r2+p2+r4r2)tan2(|p2r2+r4r2|(ptr+x)2|p2r2|)λr2(p2r21). {\psi _{1a}}(x,t) = {{\left( {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} \right)\mathop {\tan }\nolimits^2 \left( {{{\sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt 2 \sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\lambda {r^2}\left( {{{{p^2}} \over {{r^2}}} - 1} \right)}}.

Class-2: When a0=a1p42p2r2+p2+r4r2λrσ,a2=a1,μ=2p2r2+r4r2p2r2, {a_0} = {{{a_1}\sqrt {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} } \over {\sqrt \lambda r\sqrt \sigma }},\;{a_2} = {a_1},\;\mu = - {{\sqrt 2 \sqrt { - {p^2}{r^2} + {r^4} - {r^2}} } \over {\sqrt {{p^2} - {r^2}} }}, we get χ2a(x,t)=p42p2r2+p2+r4r2ei(px+rt)sin(2|p2r2+r4r2|(ptr+x)|p2r2|)λrσ(cos(2|p2r2+r4r2|(ptr+x)|p2r2|)+1), {\chi _{2a}}(x,t) = - {{\sqrt {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} {e^{i(px + rt)}}\sin \left( {{{\sqrt 2 \sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\sqrt \lambda r\sqrt \sigma \left( {\cos \left( {{{\sqrt 2 \sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right) + 1} \right)}}, ψ2a(x,t)=(p42p2r2+p2+r4r2)sin2(2|p2r2+r4r2|(ptr+x)|p2r2|)λr2(p2r21)(cos(2|p2r2+r4r2|(ptr+x)|p2r2|)+1)2. {\psi _{2a}}(x,t) = {{\left( {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} \right)\mathop {\sin }\nolimits^2 \left( {{{\sqrt 2 \sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\lambda {r^2}\left( {{{{p^2}} \over {{r^2}}} - 1} \right){{\left( {\cos \left( {{{\sqrt 2 \sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right) + 1} \right)}^2}}}.

Suppose that Eq. (23) secures the solution of the form Θ(η)=a0cos(μη)a2+a1sin(μη). \Theta (\eta ) = {{{a_0}\cos (\mu \eta )} \over {{a_2} + {a_1}\sin (\mu \eta )}}.

Placing Eq. (29) and its derivatives into Eq. (23) gives a polynomial in power of trigonometric functions. Collecting the coefficients of the same power of sin(μη), and equating each summation to zero, provides a system of equations. Solving this system of equations, provides

Class-1: When a0=a1p42p2r2+p2+r4r2λrσ,a2=0,μ=p2r2+r4r22p2r2, {a_0} = {{{a_1}\sqrt {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} } \over {\sqrt \lambda r\sqrt \sigma }},\;{a_2} = 0,\;\mu = {{\sqrt { - {p^2}{r^2} + {r^4} - {r^2}} } \over {\sqrt 2 \sqrt {{p^2} - {r^2}} }}, we get χ1b(x,t)=p42p2r2+p2+r4r2ei(px+rt)cot(|p2r2+r4r2|(ptr+x)2|p2r2|)λrσ, {\chi _{1b}}(x,t) = {{\sqrt {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} {e^{i(px + rt)}}\cot \left( {{{\sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt 2 \sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\sqrt \lambda r\sqrt \sigma }}, ψ1b(x,t)=(p42p2r2+p2+r4r2)cot2(|p2r2+r4r2|(ptr+x)2|p2r2|)λr2(p2r21). {\psi _{1b}}(x,t) = {{\left( {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} \right)\mathop {\cot }\nolimits^2 \left( {{{\sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt 2 \sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\lambda {r^2}\left( {{{{p^2}} \over {{r^2}}} - 1} \right)}}.

Class-2: When a0=a1p42p2r2+p2+r4r2λrσ,a2=a1,μ=2p2r2+r4r2p2r2, {a_0} = {{{a_1}\sqrt {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} } \over {\sqrt \lambda r\sqrt \sigma }},\;{a_2} = - {a_1},\;\mu = {{\sqrt 2 \sqrt { - {p^2}{r^2} + {r^4} - {r^2}} } \over {\sqrt {{p^2} - {r^2}} }}, we get χ2b(x,t)=p42p2r2+p2+r4r2ei(px+rt)cos(2|p2r2+r4r2|(ptr+x)|p2r2|)λrσ(sin(2|p2r2+r4r2|(ptr+x)|p2r2|)1), {\chi _{2b}}(x,t) = {{\sqrt {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} {e^{i(px + rt)}}\cos \left( {{{\sqrt 2 \sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\sqrt \lambda r\sqrt \sigma \left( {\sin \left( {{{\sqrt 2 \sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right) - 1} \right)}}, ψ2b(x,t)=(p42p2r2+p2+r4r2)cos2(2|p2r2+r4r2|(ptr+x)|p2r2|)λr2(p2r21)(sin(2|p2r2+r4r2|(ptr+x)|p2r2|)1)2. {\psi _{2b}}(x,t) = {{\left( {{p^4} - 2{p^2}{r^2} + {p^2} + {r^4} - {r^2}} \right)\mathop {\cos }\nolimits^2 \left( {{{\sqrt 2 \sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\lambda {r^2}\left( {{{{p^2}} \over {{r^2}}} - 1} \right){{\left( {\sin \left( {{{\sqrt 2 \sqrt {| - {p^2}{r^2} + {r^4} - {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right) - 1} \right)}^2}}}.

Assuming that Eq. (23) secures the solution of the form Θ(η)=a0sinh(μη)a2+a1cosh(μη). \Theta (\eta ) = {{{a_0}\sinh (\mu \eta )} \over {{a_2} + {a_1}\cosh (\mu \eta )}}.

Placing Eq. (34) and its derivatives into Eq. (23) gives a polynomial in power of hyperbolic functions. Collecting the coefficients of the same power of cosh(μη), and equating each summation to zero, provides a system of equations. Solving this system of equations, provides

Class-1: When a0=a1p4+2p2r2p2r4+r2λrσ,a2=0,μ=rp2r2+12p22r2, {a_0} = {{{a_1}\sqrt { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} } \over {\sqrt \lambda r\sqrt \sigma }},\;{a_2} = 0,\;\mu = - {{r\sqrt {{p^2} - {r^2} + 1} } \over {\sqrt {2{p^2} - 2{r^2}} }}, we get χ1c(x,t)=p4+2p2r2p2r4+r2ei(px+rt)tanh(r|p2r2+1|(ptr+x)|2p22r2|)λrσ, {\chi _{1c}}(x,t) = - {{\sqrt { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} {e^{i(px + rt)}}\tanh \left( {{{r\sqrt {|{p^2} - {r^2} + 1|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|2{p^2} - 2{r^2}|} }}} \right)} \over {\sqrt \lambda r\sqrt \sigma }}, ψ1c(x,t)=(p4+2p2r2p2r4+r2)tanh2(r|p2r2+1|(ptr+x)|2p22r2|)λr2(p2r21). {\psi _{1c}}(x,t) = {{\left( { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} \right)\mathop {\tanh }\nolimits^2 \left( {{{r\sqrt {|{p^2} - {r^2} + 1|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|2{p^2} - 2{r^2}|} }}} \right)} \over {\lambda {r^2}\left( {{{{p^2}} \over {{r^2}}} - 1} \right)}}.

Class-2: When a0=a1p4+2p2r2p2r4+r2λrσ,a2=a1,μ=2p2r2r4+r2p2r2, {a_0} = {{{a_1}\sqrt { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} } \over {\sqrt \lambda r\sqrt \sigma }},\;{a_2} = - {a_1},\;\mu = {{\sqrt 2 \sqrt {{p^2}{r^2} - {r^4} + {r^2}} } \over {\sqrt {{p^2} - {r^2}} }}, χ2c(x,t)=p4+2p2r2p2r4+r2ei(px+rt)sinh(2|p2r2r4+r2|(ptr+x)|p2r2|)λrσ(cosh(2|p2r2r4+r2|(ptr+x)|p2r2|)1), {\chi _{2c}}(x,t) = {{\sqrt { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} {e^{i(px + rt)}}\sinh \left( {{{\sqrt 2 \sqrt {|{p^2}{r^2} - {r^4} + {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\sqrt \lambda r\sqrt \sigma \left( {\cosh \left( {{{\sqrt 2 \sqrt {|{p^2}{r^2} - {r^4} + {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right) - 1} \right)}}, ψ2c(x,t)=(p4+2p2r2p2r4+r2)sinh2(2|p2r2r4+r2|(ptr+x)|p2r2|)λr2(p2r21)(cosh(2|p2r2r4+r2|(ptr+x)|p2r2|)1)2. {\psi _{2c}}(x,t) = {{\left( { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} \right)\mathop {\sinh }\nolimits^2 \left( {{{\sqrt 2 \sqrt {|{p^2}{r^2} - {r^4} + {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\lambda {r^2}\left( {{{{p^2}} \over {{r^2}}} - 1} \right){{\left( {\cosh \left( {{{\sqrt 2 \sqrt {|{p^2}{r^2} - {r^4} + {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right) - 1} \right)}^2}}}.

Assuming that Eq. (23) secures the solution of the form Θ(η)=a0cosh(μη)a2+a1sinh(μη). \Theta (\eta ) = {{{a_0}\cosh (\mu \eta )} \over {{a_2} + {a_1}\sinh (\mu \eta )}}.

Placing Eq. (39) and its derivatives into Eq. (23) gives a polynomial in power of hyperbolic functions. Collecting the coefficients of the same power of sinh(μη), and equating each summation to zero, provides a system of equations. Solving this system of equations, provides

Class-1: When a0=a1p4+2p2r2p2r4+r2λrσ,a2=0,μ=rp2r2+12p22r2, {a_0} = {{{a_1}\sqrt { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} } \over {\sqrt \lambda r\sqrt \sigma }},\;{a_2} = 0,\;\mu = - {{r\sqrt {{p^2} - {r^2} + 1} } \over {\sqrt {2{p^2} - 2{r^2}} }}, we get χ1d(x,t)=p4+2p2r2p2r4+r2ei(px+rt)coth(r|p2r2+1|(ptr+x)|2p22r2|)λrσ, {\chi _{1d}}(x,t) = - {{\sqrt { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} {e^{i(px + rt)}}\coth \left( {{{r\sqrt {|{p^2} - {r^2} + 1|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|2{p^2} - 2{r^2}|} }}} \right)} \over {\sqrt \lambda r\sqrt \sigma }}, ψ1d(x,t)=(p4+2p2r2p2r4+r2)coth2(r|p2r2+1|(ptr+x)|2p22r2|)λr2(p2r21). {\psi _{1d}}(x,t) = {{\left( { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} \right)\mathop {\coth }\nolimits^2 \left( {{{r\sqrt {|{p^2} - {r^2} + 1|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|2{p^2} - 2{r^2}|} }}} \right)} \over {\lambda {r^2}\left( {{{{p^2}} \over {{r^2}}} - 1} \right)}}.

Class-2: When a0=a1p4+2p2r2p2r4+r2λrσ,a2=ia1,μ=2p2r2r4+r2p2r2, {a_0} = {{{a_1}\sqrt { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} } \over {\sqrt \lambda r\sqrt \sigma }},\;{a_2} = i{a_1},\;\mu = - {{\sqrt 2 \sqrt {{p^2}{r^2} - {r^4} + {r^2}} } \over {\sqrt {{p^2} - {r^2}} }}, we get χ2d(x,t)=p4+2p2r2p2r4+r2ei(px+rt)cosh(2|p2r2r4+r2|(ptr+x)|p2r2|)λrσ(sinh(2|p2r2r4+r2|(ptr+x)|p2r2|)+i), {\chi _{2d}}(x,t) = {{\sqrt { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} {e^{i(px + rt)}}\cosh \left( {{{\sqrt 2 \sqrt {|{p^2}{r^2} - {r^4} + {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\sqrt \lambda r\sqrt \sigma \left( { - \sinh \left( {{{\sqrt 2 \sqrt {|{p^2}{r^2} - {r^4} + {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right) + i} \right)}}, ψ2d(x,t)=(p4+2p2r2p2r4+r2)cosh2(2|p2r2r4+r2|(ptr+x)|p2r2|)λr2(p2r21)(sinh(2|p2r2r4+r2|(ptr+x)|p2r2|)+i)2. {\psi _{2d}}(x,t) = {{\left( { - {p^4} + 2{p^2}{r^2} - {p^2} - {r^4} + {r^2}} \right)\mathop {\cosh }\nolimits^2 \left( {{{\sqrt 2 \sqrt {|{p^2}{r^2} - {r^4} + {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right)} \over {\lambda {r^2}\left( {{{{p^2}} \over {{r^2}}} - 1} \right){{\left( { - \sinh \left( {{{\sqrt 2 \sqrt {|{p^2}{r^2} - {r^4} + {r^2}|} \left( {{{pt} \over r} + x} \right)} \over {\sqrt {|{p^2} - {r^2}|} }}} \right) + i} \right)}^2}}}.

Application to Eq. (2)

Here, we present the application of the extended rational sine/cosine and sinh/cosh methods to the coupled Maccari system.

Consider the wave transformation χ(x,y,t)=eiθΘ(η),ψ(x,y,t)=Φ(η),η=x+y+kt,θ=ax+by+rt. \chi (x,y,t) = {e^{i\theta }}\Theta (\eta ),\;\psi (x,y,t) = \Phi (\eta ),\;\eta = x + y + kt,\;\theta = ax + by + rt. Placing Eq. (44) into Eq. (2), provides the following NODE: Θ3+(1+c)(a2+r)Θ(1+c)Θ=0 {\Theta ^3} + (1 + c)({a^2} + r)\Theta - (1 + c){\Theta ^{''}} = 0 from the real part, and the relation k = −2a from the imaginary part.

Assuming that Eq. (45) secures (24) as its trial solution

Proceedings as before, we secure set of solutions as:

Class-1: When a0=a1((12a)(a2+r)),a2=0,μ=a2+r2, {a_0} = {a_1}\left( { - \sqrt {(1 - 2a)\left( {{a^2} + r} \right)} } \right),\;{a_2} = 0,\;\mu = {{\sqrt {{a^2} + r} } \over {\sqrt 2 }}, we get χ1a(x,y,t)=a2+(12a)rei(ax+by+rt)tan(|a2+r|(2at+x+y)2), {\chi _{1a}}(x,y,t) = - \sqrt {{a^2} + (1 - 2a)r} {e^{i(ax + by + rt)}}\tan \left( {{{\sqrt {|{a^2} + r|} ( - 2at + x + y)} \over {\sqrt 2 }}} \right), ψ1a(x,y,t)=(a2+r)tan2(|a2+r|(2at+x+y)2). {\psi _{1a}}(x,y,t) = - \left( {{a^2} + r} \right)\mathop {\tan }\nolimits^2 \left( {{{\sqrt {|{a^2} + r|} ( - 2at + x + y)} \over {\sqrt 2 }}} \right).

Class-2: a0=a1(12a)(a2+r),a2=a1,μ=2a2+r, {a_0} = {a_1}\sqrt {(1 - 2a)\left( {{a^2} + r} \right)} ,\;{a_2} = - {a_1},\;\mu = - \sqrt 2 \sqrt {{a^2} + r} , we get χ2a(x,y,t)=(12a)(a2+r)ei(ax+by+rt)sin(2|a2+r|(2at+x+y))cos(2|a2+r|(2at+x+y))1, {\chi _{2a}}(x,y,t) = - {{\sqrt {(1 - 2a)\left( {{a^2} + r} \right)} {e^{i(ax + by + rt)}}\sin \left( {\sqrt 2 \sqrt {|{a^2} + r|} ( - 2at + x + y)} \right)} \over {\cos \left( {\sqrt 2 \sqrt {|{a^2} + r|} ( - 2at + x + y)} \right) - 1}}, ψ2a(x,y,t)=(a2+r)sin2(2|a2+r|(2at+x+y))(cos(2|a2+r|(2at+x+y))1)2. {\psi _{2a}}(x,y,t) = - {{\left( {{a^2} + r} \right)\mathop {\sin }\nolimits^2 \left( {\sqrt 2 \sqrt {|{a^2} + r|} ( - 2at + x + y)} \right)} \over {{{\left( {\cos \left( {\sqrt 2 \sqrt {|{a^2} + r|} ( - 2at + x + y)} \right) - 1} \right)}^2}}}.

Assuming that Eq. (45) secures (29) as its trial solution

Proceedings as before, we get the following set of solutions:

Class-1: When a0=a1((12a)(a2+r)),a2=0,μ=a2+r2, {a_0} = {a_1}\left( { - \sqrt {(1 - 2a)\left( {{a^2} + r} \right)} } \right),\;{a_2} = 0,\;\mu = {{\sqrt {{a^2} + r} } \over {\sqrt 2 }}, we get χ1b(x,y,t)=(12a)(a2+r)(ei(ax+by+rt))cot(|a2+r|(2at+x+y)2), {\chi _{1b}}(x,y,t) = \sqrt {(1 - 2a)\left( {{a^2} + r} \right)} \left( { - {e^{i(ax + by + rt)}}} \right)\cot \left( {{{\sqrt {|{a^2} + r|} ( - 2at + x + y)} \over {\sqrt 2 }}} \right), ψ1b(x,y,t)=(a2+r)cot2(|a2+r|(2at+x+y)2). {\psi _{1b}}(x,y,t) = - \left( {{a^2} + r} \right)\mathop {\cot }\nolimits^2 \left( {{{\sqrt {|{a^2} + r|} ( - 2at + x + y)} \over {\sqrt 2 }}} \right).

Class-2: When a0=a1((12a)(a2+r)),a2=a1,μ=2a2+r, {a_0} = {a_1}\left( { - \sqrt {(1 - 2a)\left( {{a^2} + r} \right)} } \right),\;{a_2} = - {a_1},\;\mu = \sqrt 2 \sqrt {{a^2} + r} , we get χ2b(x,y,t)=(12a)(a2+r)ei(ax+by+rt)cos(2|a2+r|(2at+x+y))sin(2|a2+r|(2at+x+y))1, {\chi _{2b}}(x,y,t) = - {{\sqrt {(1 - 2a)\left( {{a^2} + r} \right)} {e^{i(ax + by + rt)}}\cos \left( {\sqrt 2 \sqrt {|{a^2} + r|} ( - 2at + x + y)} \right)} \over {\sin \left( {\sqrt 2 \sqrt {|{a^2} + r|} ( - 2at + x + y)} \right) - 1}}, ψ2b(x,y,t)=(a2+r)cos2(2|a2+r|(2at+x+y))(sin(2|a2+r|(2at+x+y))1)2. {\psi _{2b}}(x,y,t) = - {{\left( {{a^2} + r} \right)\mathop {\cos }\nolimits^2 \left( {\sqrt 2 \sqrt {|{a^2} + r|} ( - 2at + x + y)} \right)} \over {{{\left( {\sin \left( {\sqrt 2 \sqrt {|{a^2} + r|} ( - 2at + x + y)} \right) - 1} \right)}^2}}}.

Assuming that Eq. (45) secures (34) as its trial solution

Proceedings as before, we get the following set of solutions:

Class-1: When a0=a1(2a1)(a2+r),a2=0,μ=a2r2, {a_0} = {a_1}\sqrt {(2a - 1)\left( {{a^2} + r} \right)} ,\;{a_2} = 0,\;\mu = - {{\sqrt { - {a^2} - r} } \over {\sqrt 2 }}, we get χ1c(x,y,t)=(2a1)(a2+r)(ei(ax+by+rt))tanh(|a2r|(2at+x+y)2), {\chi _{1c}}(x,y,t) = \sqrt {(2a - 1)\left( {{a^2} + r} \right)} \left( { - {e^{i(ax + by + rt)}}} \right)\tanh \left( {{{\sqrt {| - {a^2} - r|} ( - 2at + x + y)} \over {\sqrt 2 }}} \right), ψ1c(x,y,t)=(2a1)(a2+r)tanh2(|a2r|(2at+x+y)2)12a. {\psi _{1c}}(x,y,t) = - {{(2a - 1)\left( {{a^2} + r} \right)\mathop {\tanh }\nolimits^2 \left( {{{\sqrt {| - {a^2} - r|} ( - 2at + x + y)} \over {\sqrt 2 }}} \right)} \over {1 - 2a}}.

Class-2: When a0=a1((2a1)(a2+r)),a2=a1,μ=2a2r, {a_0} = {a_1}\left( { - \sqrt {(2a - 1)\left( {{a^2} + r} \right)} } \right),\;{a_2} = - {a_1},\;\mu = \sqrt 2 \sqrt { - {a^2} - r} , we get χ2c(x,y,t)=(2a1)(a2+r)ei(ax+by+rt)sinh(2|a2r|(2at+x+y))cosh(2|a2r|(2at+x+y))1, {\chi _{2c}}(x,y,t) = - {{\sqrt {(2a - 1)\left( {{a^2} + r} \right)} {e^{i(ax + by + rt)}}\sinh \left( {\sqrt 2 \sqrt {| - {a^2} - r|} ( - 2at + x + y)} \right)} \over {\cosh \left( {\sqrt 2 \sqrt {| - {a^2} - r|} ( - 2at + x + y)} \right) - 1}}, ψ2c(x,y,t)=(2a1)(a2+r)sinh2(2|a2r|(2at+x+y))(12a)(cosh(2|a2r|(2at+x+y))1)2. {\psi _{2c}}(x,y,t) = - {{(2a - 1)\left( {{a^2} + r} \right)\mathop {\sinh }\nolimits^2 \left( {\sqrt 2 \sqrt {| - {a^2} - r|} ( - 2at + x + y)} \right)} \over {(1 - 2a){{\left( {\cosh \left( {\sqrt 2 \sqrt {| - {a^2} - r|} ( - 2at + x + y)} \right) - 1} \right)}^2}}}.

Assuming that Eq. (45) secures (39) as its trial solution

Proceedings as before, we secure the following set of solutions:

Class-1: When a0=a1(2a1)(a2+r),a2=0,μ=a2r2, {a_0} = {a_1}\sqrt {(2a - 1)\left( {{a^2} + r} \right)} ,\;{a_2} = 0,\;\mu = {{\sqrt { - {a^2} - r} } \over {\sqrt 2 }}, we get χ1d(x,y,t)=(2a1)a2+rei(ax+by+rt)coth(|a2r|(2at+x+y)2), {\chi _{1d}}(x,y,t) = \sqrt {(2a - 1){a^2} + r} {e^{i(ax + by + rt)}}\coth \left( {{{\sqrt {| - {a^2} - r|} ( - 2at + x + y)} \over {\sqrt 2 }}} \right), ψ1d(x,y,t)=(2a1)(a2+r)coth2(|a2r|(2at+x+y)2)12a. {\psi _{1d}}(x,y,t) = - {{(2a - 1)\left( {{a^2} + r} \right)\mathop {\coth }\nolimits^2 \left( {{{\sqrt {| - {a^2} - r|} ( - 2at + x + y)} \over {\sqrt 2 }}} \right)} \over {1 - 2a}}.

Class-2: When a0=a1((2a1)(a2+r)),a2=ia1,μ=2a2r, {a_0} = {a_1}\left( { - \sqrt {(2a - 1)\left( {{a^2} + r} \right)} } \right),\;{a_2} = - i{a_1},\;\mu = - \sqrt 2 \sqrt { - {a^2} - r} , we get χ2d(x,y,t)=(2a1)(a2+r)ei(ax+by+rt)cosh(2|a2r|(2at+x+y))sinh(2|a2r|(2at+x+y))i, {\chi _{2d}}(x,y,t) = - {{\sqrt {(2a - 1)\left( {{a^2} + r} \right)} {e^{i(ax + by + rt)}}\cosh \left( {\sqrt 2 \sqrt {| - {a^2} - r|} ( - 2at + x + y)} \right)} \over { - \sinh \left( {\sqrt 2 \sqrt {| - {a^2} - r|} ( - 2at + x + y)} \right) - i}}, ψ2d(x,y,t)=(2a1)(a2+r)cosh2(2|a2r|(2at+x+y))(12a)(sinh(2|a2r|(2at+x+y))i)2. {\psi _{2d}}(x,y,t) = - {{(2a - 1)\left( {{a^2} + r} \right)\mathop {\cosh }\nolimits^2 \left( {\sqrt 2 \sqrt {| - {a^2} - r|} ( - 2at + x + y)} \right)} \over {(1 - 2a){{\left( { - \sinh \left( {\sqrt 2 \sqrt {| - {a^2} - r|} ( - 2at + x + y)} \right) - i} \right)}^2}}}.

Graphical description

In this section, we present the 3D, 2D, and their crossponding contour graphs to some of the reported solutions under a suitable choice of parameters.

Fig. 1

The (a) 2D, 3D and (b) contour surfaces of Eq. (17).

Fig. 2

The (a) 2D, 3D and (b) contour surfaces of Eq. (24).

Fig. 3

The (a) 2D, 3D and (b) contour surfaces of Eq. (25).

Conclusions

This study revealed the singular periodic, periodic wave, topological, topological kink-type, dark and singular soliton solutions to two important nonlinear complex mathematical models, namely; the Klein-Gordon-Zakharov equations, the (2+1)-dimensional Maccari system via the extended rational sine-cosine/rational sinh-cosh methods. All the reported solutions satisfy the studied nonlinear models. To display the physical features of the studied models, the 3D, 2D and the contour graphs to some of the obtained solutions are presented. It is believed that the reported solutions may play an important role describing the physical features of various non-linear complex models. The methods used are efficient and important mathematical tools that may be applied in obtaining solutions to various nonlinear models.

Fig. 1

The (a) 2D, 3D and (b) contour surfaces of Eq. (17).
The (a) 2D, 3D and (b) contour surfaces of Eq. (17).

Fig. 2

The (a) 2D, 3D and (b) contour surfaces of Eq. (24).
The (a) 2D, 3D and (b) contour surfaces of Eq. (24).

Fig. 3

The (a) 2D, 3D and (b) contour surfaces of Eq. (25).
The (a) 2D, 3D and (b) contour surfaces of Eq. (25).

G. Wang and T. Xu, Optical soliton of time fractional Schrödinger equations with He's semi-inverse method, Laser Phys., 25 (2015) 055402 WangG. XuT. Optical soliton of time fractional Schrödinger equations with He's semi-inverse method Laser Phys. 25 2015 055402 10.1088/1054-660X/25/5/055402 Search in Google Scholar

A.H. Bhrawy, E.H. Doha, S.S. Ezz-Eldien and R.A. Van Gorder, A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems, The European Physical Journal Plus, 129 (2014) 260 BhrawyA.H. DohaE.H. Ezz-EldienS.S. Van GorderR.A. A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems The European Physical Journal Plus 129 2014 260 10.1140/epjp/i2014-14260-6 Search in Google Scholar

H. Zhen, B. Tian, Y. Wang, H. Zhong and W. Sun, Dynamic behavior of the quantum Zakharov-Kuznetsov equations in dense quantum magnetoplasmas, Physics of Plasmas, 21 (2014), 012304. ZhenH. TianB. WangY. ZhongH. SunW. Dynamic behavior of the quantum Zakharov-Kuznetsov equations in dense quantum magnetoplasmas Physics of Plasmas 21 2014 012304 10.1063/1.4856735 Search in Google Scholar

X.J. Yang, F. Gao and H.M. Srivastava, Exact Travelling Wave solutions for the Local Fractional Two-Dimensional Burgers-Type Equations, Computers and Mathematics with Applications, 73(2) (2017), 203–210. YangX.J. GaoF. SrivastavaH.M. Exact Travelling Wave solutions for the Local Fractional Two-Dimensional Burgers-Type Equations Computers and Mathematics with Applications 73 2 2017 203 210 10.1016/j.camwa.2016.11.012 Search in Google Scholar

C.T. Sindi and J. Manafian, Soliton Solutions of the Quantum Zakharov-Kuznetsov Equation Which Arises in Quantum Magneto-Plasmas, Eur. Phys. J. Plus, 132(67) (2017), DOI 10.1140/epjp/i2017-11354-7. SindiC.T. ManafianJ. Soliton Solutions of the Quantum Zakharov-Kuznetsov Equation Which Arises in Quantum Magneto-Plasmas Eur. Phys. J. Plus 132 67 2017 10.1140/epjp/i2017-11354-7 Open DOISearch in Google Scholar

C. Bai, C. Bai and H. Zhao, A New Generalized Algebraic Method and its Application in Nonlinear Evolution Equations with Variable Coefficients, Z. Naturforsch, 60a (2005), 211–220. BaiC. BaiC. ZhaoH. A New Generalized Algebraic Method and its Application in Nonlinear Evolution Equations with Variable Coefficients Z. Naturforsch 60a 2005 211 220 10.1515/zna-2005-0401 Search in Google Scholar

A.M. Wazwaz and S.A. El-Tantawy, A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions, Nonlinear Dyn, 83(3), (2016) 1529–1534. WazwazA.M. El-TantawyS.A. A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions Nonlinear Dyn 83 3 2016 1529 1534 10.1007/s11071-015-2427-0 Search in Google Scholar

A.S. Alofi, Extended Jacobi Elliptic Function Expansion Method for Nonlinear Benjamin-Bona-Mahony Equations, International Mathematical Forum, 7(53) (2012), 2639–2649. AlofiA.S. Extended Jacobi Elliptic Function Expansion Method for Nonlinear Benjamin-Bona-Mahony Equations International Mathematical Forum 7 53 2012 2639 2649 Search in Google Scholar

D.J. Evans, K.R. Raslan, The tanh Function Method for Solving Some Important Non-Linear Partial Differential Equations, International Journal of Computer Mathematics, 82(7) (2005), 897–905. EvansD.J. RaslanK.R. The tanh Function Method for Solving Some Important Non-Linear Partial Differential Equations International Journal of Computer Mathematics 82 7 2005 897 905 10.1080/00207160412331336026 Search in Google Scholar

A.H. Arnous and M. Mirzazadeh, Application of the generalized Kudryashov method to the Eckhaus equation, Nonlinear Analysis: Modelling and Control, 21(5) (2016), 577–586. ArnousA.H. MirzazadehM. Application of the generalized Kudryashov method to the Eckhaus equation Nonlinear Analysis: Modelling and Control 21 5 2016 577 586 10.15388/NA.2016.5.1 Search in Google Scholar

S. Bibi and S.T. Mohyud-Din, Traveling wave solutions of KdVs using sine-cosine method, Journal of the Association of Arab Universities for Basic and Applied Sciences, 15 (2014), 90–93. BibiS. Mohyud-DinS.T. Traveling wave solutions of KdVs using sine-cosine method Journal of the Association of Arab Universities for Basic and Applied Sciences 15 2014 90 93 10.1016/j.jaubas.2013.03.006 Search in Google Scholar

E.M.E. Zayed, A.M. Abourabia, K.A. Gepreel and M.M. Horbaty, On the Rational Solitary Wave Solutions for the Nonlinear Hirota-Satsuma Coupled KdV System, Journal of Applied Analysis, 85 (2006), 751–768. ZayedE.M.E. AbourabiaA.M. GepreelK.A. HorbatyM.M. On the Rational Solitary Wave Solutions for the Nonlinear Hirota-Satsuma Coupled KdV System Journal of Applied Analysis 85 2006 751 768 10.1080/00036810600604789 Search in Google Scholar

S.S. Motsa, P. Sibanda, F.G. Awad and S. Shateyi, A New Spectral-Homotopy Analysis Method for the MHD Jeffery-Hamel Problem, Computers and Fluids, 39 (2010), 1219–1225. MotsaS.S. SibandaP. AwadF.G. ShateyiS. A New Spectral-Homotopy Analysis Method for the MHD Jeffery-Hamel Problem Computers and Fluids 39 2010 1219 1225 10.1016/j.compfluid.2010.03.004 Search in Google Scholar

H.M. Baskonus and H. Bulut, Exponential Prototype Structure for (2+1)-Dimensional Boiti-Leon-Pempinelli systems in Mathematical Physics, Waves in Random and Complex Media, 26(2) (2016), 189–196. BaskonusH.M. BulutH. Exponential Prototype Structure for (2+1)-Dimensional Boiti-Leon-Pempinelli systems in Mathematical Physics Waves in Random and Complex Media 26 2 2016 189 196 10.1080/17455030.2015.1132860 Search in Google Scholar

W. Gao, P. Veeresha, D.G. Prakasha, H.M. Baskonus, New numerical simulation for fractional Benney-Lin equation arising in falling film problems using two novel techniques, Numerical Methods for Partial Differential Equations, 37(1) (2021), 210–243. GaoW. VeereshaP. PrakashaD.G. BaskonusH.M. New numerical simulation for fractional Benney-Lin equation arising in falling film problems using two novel techniques Numerical Methods for Partial Differential Equations 37 1 2021 210 243 10.1002/num.22526 Search in Google Scholar

P. Veeresha, D.G. Prakasha, H.M. Baskonus, An Efficient Technique for Coupled Fractional Whitham-Broer-Kaup Equations Describing the Propagation of Shallow Water Waves, Advances in Intelligent Systems and Computing, (2020), 49–75. VeereshaP. PrakashaD.G. BaskonusH.M. An Efficient Technique for Coupled Fractional Whitham-Broer-Kaup Equations Describing the Propagation of Shallow Water Waves Advances in Intelligent Systems and Computing 2020 49 75 10.1007/978-3-030-39112-6_4 Search in Google Scholar

P. Veeresha, D.G. Prakasha, H.M. Baskonus, An efficient technique for a fractional-order system of equations describing the unsteady flow of a polytropic gas, Pramana, 75 (2020), 93. VeereshaP. PrakashaD.G. BaskonusH.M. An efficient technique for a fractional-order system of equations describing the unsteady flow of a polytropic gas Pramana 75 2020 93 10.1007/s12043-019-1829-9 Search in Google Scholar

P. Veeresha, D.G. Prakasha, H.M. Baskonus, G. Yel, An efficient analytical approach for fractional Lakshmanan?Porsezian?Daniel model, Pramana, 43(7) (2020), 4136–4155. VeereshaP. PrakashaD.G. BaskonusH.M. YelG. An efficient analytical approach for fractional Lakshmanan?Porsezian?Daniel model Pramana 43 7 2020 4136 4155 10.1002/mma.6179 Search in Google Scholar

H.M. Baskonus, H. Bulut, and A. Atangana, On the Complex and Hyperbolic Structures of Longitudinal Wave Equation in a Magneto-Electro-Elastic Circular Rod, Smart Materials and Structures, 25(3) (2016), 035022. BaskonusH.M. Bulut,H. AtanganaA. On the Complex and Hyperbolic Structures of Longitudinal Wave Equation in a Magneto-Electro-Elastic Circular Rod Smart Materials and Structures 25 3 2016 035022 10.1088/0964-1726/25/3/035022 Search in Google Scholar

C. Cattani, T.A. Sulaiman, H.M. Baskonus and H. Bulut, Solitons in an inhomogeneous Murnaghan's rod, Eur. Phys. J. Plus, 133 (2018), 228 CattaniC. SulaimanT.A. BaskonusH.M. BulutH. Solitons in an inhomogeneous Murnaghan's rod Eur. Phys. J. Plus 133 2018 228 10.1140/epjp/i2018-12085-y Search in Google Scholar

S. Duran, M. Askin and T.A. Sulaiman, New soliton properties to the ill-posed Boussinesq equation arising in nonlinear physical science, IJOCTA, 7(3) (2017), 240–247. DuranS. AskinM. SulaimanT.A. New soliton properties to the ill-posed Boussinesq equation arising in nonlinear physical science IJOCTA 7 3 2017 240 247 10.11121/ijocta.01.2017.00495 Search in Google Scholar

H. Bulut, T.A. Sulaiman, H.M. Baskonus, and A.A. Sandulyak, New Solitary and Optical Wave Structures to the (1+1)-Dimensional Combined KdV-mKdV Equation, Optik, 135 (2017), 327–336. BulutH. SulaimanT.A. Baskonus,H.M. SandulyakA.A. New Solitary and Optical Wave Structures to the (1+1)-Dimensional Combined KdV-mKdV Equation Optik 135 2017 327 336 10.1016/j.ijleo.2017.01.071 Search in Google Scholar

Y. Xu, K. Sun, S. He and L. Zhang, Dynamics of a Fractional-Order Simplified Unified System Based on the Adomian Decomposition Method, Eur. Phys. J. Plus, 131 (2016), 186. XuY. SunK. HeS. ZhangL. Dynamics of a Fractional-Order Simplified Unified System Based on the Adomian Decomposition Method Eur. Phys. J. Plus 131 2016 186 10.1140/epjp/i2016-16186-3 Search in Google Scholar

Y. Chen and B. Li, General projective Riccati equation method and exact solutions for generalized KdV-type and KdV-Burgers-type equations with nonlinear terms of any order, Chaos Soliton Fractals, 19(4) (2004), 984–977. ChenY. LiB. General projective Riccati equation method and exact solutions for generalized KdV-type and KdV-Burgers-type equations with nonlinear terms of any order Chaos Soliton Fractals 19 4 2004 984 977 10.1016/S0960-0779(03)00250-9 Search in Google Scholar

H. Naher and F.A. Abdullah, The Modified Benjamin-Bona-Mahony Equation via the Extended Generalized Riccati Equation Mapping Method, Applied Mathematical Sciences, 6(111) (2012), 5495–5512. NaherH. AbdullahF.A. The Modified Benjamin-Bona-Mahony Equation via the Extended Generalized Riccati Equation Mapping Method Applied Mathematical Sciences 6 111 2012 5495 5512 Search in Google Scholar

W. Zhang, A Generalized Tanh-Function Type Method and the (G′/G)-Expansion Method for Solving Nonlinear Partial Differential Equations, Applied Mathematics, 4 (2013), 11–16. ZhangW. A Generalized Tanh-Function Type Method and the (G′/G)-Expansion Method for Solving Nonlinear Partial Differential Equations Applied Mathematics 4 2013 11 16 10.4236/am.2013.410A1003 Search in Google Scholar

Y. Liang, Exact Solutions of the (3+1)-Dimensional Modified KdV-Zakharov-Kuznetsev equation and Fisher equations using the modified Simple Equation Method, Journal of Interdisciplinary Mathematics, 17 (2014), 565–578. LiangY. Exact Solutions of the (3+1)-Dimensional Modified KdV-Zakharov-Kuznetsev equation and Fisher equations using the modified Simple Equation Method Journal of Interdisciplinary Mathematics 17 2014 565 578 10.1080/09720502.2014.950054 Search in Google Scholar

A. R. Seadawy, Ionic acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili Burgers equations in quantum plasma, Mathematical Methods and Applied Sciences, 40 (2017) 1598–1607. SeadawyA. R. Ionic acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili Burgers equations in quantum plasma Mathematical Methods and Applied Sciences 40 2017 1598 1607 Search in Google Scholar

S.T.R. Rizvi and K. Ali, Jacobian elliptic periodic traveling wave solutions in the negative-index materials, Nonlinear Dynamics, 87(3)(2017) 1967–1972. RizviS.T.R. AliK. Jacobian elliptic periodic traveling wave solutions in the negative-index materials Nonlinear Dynamics 87 3 2017 1967 1972 10.1007/s11071-016-3166-6 Search in Google Scholar

C. Cattani, Y.Y. Rushchitskii, Cubically nonlinear elastic waves: wave equations and methods of analysis, International applied mechanics, 39(10) (2003) 1115–1145. CattaniC. RushchitskiiY.Y. Cubically nonlinear elastic waves: wave equations and methods of analysis International applied mechanics 39 10 2003 1115 1145 10.1023/B:INAM.0000010366.48158.48 Search in Google Scholar

M. Eslami, A. Neyrame and Ebrahimi M., Explicit solutions of nonlinear (2+1)-dimensional dispersive long wave equation, Journal of King Saud University-Science, 24(1) (2012) 69–71. EslamiM. NeyrameA. M.Ebrahimi Explicit solutions of nonlinear (2+1)-dimensional dispersive long wave equation Journal of King Saud University-Science 24 1 2012 69 71 10.1016/j.jksus.2010.08.003 Search in Google Scholar

A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part I, Comp. and Math. Appl. 70 (2015) 345–352. SeadawyA. R. Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part I Comp. and Math. Appl. 70 2015 345 352 10.1016/j.camwa.2015.04.015 Search in Google Scholar

M. Eslami and H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, 53(3) (2016) 475–485. EslamiM. RezazadehH. The first integral method for Wu-Zhang system with conformable time-fractional derivative Calcolo 53 3 2016 475 485 10.1007/s10092-015-0158-8 Search in Google Scholar

S.T.R. Rizvi, K. Ali, M. Salman, B. Nawaz and M. Younis, Solitary wave solutions for quintic complex Ginzburg-Landau model, Optik, 149 59–62 (2017) RizviS.T.R. AliK. SalmanM. NawazB. YounisM. Solitary wave solutions for quintic complex Ginzburg-Landau model Optik 149 59 62 2017 10.1016/j.ijleo.2017.09.028 Search in Google Scholar

S.S. Afzal, M. Younis and S.T.R. Rizvi, Optical dark and dark-singular solitons with anti-cubic nonlinearity, Optik, 147 27–31 (2017) AfzalS.S. YounisM. RizviS.T.R. Optical dark and dark-singular solitons with anti-cubic nonlinearity Optik 147 27 31 2017 10.1016/j.ijleo.2017.08.067 Search in Google Scholar

W. Gao, H. Rezazadeh, Z. Pinar, H.M. Baskonus, S. Sarwa, G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Optical and Quantum Electronics, 52 52 (2020) GaoW. RezazadehH. PinarZ. BaskonusH.M. SarwaS. YelG. Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique Optical and Quantum Electronics 52 52 2020 10.1007/s11082-019-2162-8 Search in Google Scholar

V. Mohammadnezhad, M. Eslami, H. Rezazadeh, Stability Analysis of Linear Conformable Fractional Differential Equations System with Time Delays, Boletim da Sociedade Paranaense de Matemtica, 38(6) 159–171 (2020) MohammadnezhadV. EslamiM. RezazadehH. Stability Analysis of Linear Conformable Fractional Differential Equations System with Time Delays Boletim da Sociedade Paranaense de Matemtica 38 6 159 171 2020 10.5269/bspm.v38i6.37010 Search in Google Scholar

H. Rezazadeh, J. Vahidi, A. Zafar, A. Bekir, The Functional Variable Method to Find New Exact Solutions of the Nonlinear Evolution Equations with Dual-Power-Law Nonlinearity, International Journal of Nonlinear Sciences and Numerical Simulation, 21(3–4) 249–257 (2020) RezazadehH. VahidiJ. ZafarA. BekirA. The Functional Variable Method to Find New Exact Solutions of the Nonlinear Evolution Equations with Dual-Power-Law Nonlinearity International Journal of Nonlinear Sciences and Numerical Simulation 21 3–4 249 257 2020 10.1515/ijnsns-2019-0064 Search in Google Scholar

W. Gao, R. Silambarasan, H.M. Baskonus, R.V. Anand, H. Rezazadeh, Periodic waves of the non dissipative double dispersive micro strain wave in the micro structured solids, Physica A: Statistical Mechanics and its Applications, 545 123772 (2020) GaoW. SilambarasanR. BaskonusH.M. AnandR.V. RezazadehH. Periodic waves of the non dissipative double dispersive micro strain wave in the micro structured solids Physica A: Statistical Mechanics and its Applications 545 123772 2020 10.1016/j.physa.2019.123772 Search in Google Scholar

N. Mahaka and G. Akram, Extension of rational sine-cosine and rational sinh-cosh techniques to extract solutions for the perturbed NLSE with Kerr law nonlinearity, Eur. Phys. J. Plus, 134 159 (2019) MahakaN. AkramG. Extension of rational sine-cosine and rational sinh-cosh techniques to extract solutions for the perturbed NLSE with Kerr law nonlinearity Eur. Phys. J. Plus 134 159 2019 10.1140/epjp/i2019-12545-x Search in Google Scholar

N. Mahaka and G. Akram, Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques, Physica Scripta, 94 115212 (2019) MahakaN. AkramG. Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques Physica Scripta 94 115212 2019 10.1088/1402-4896/ab20f3 Search in Google Scholar

Z.Y. Zhang, J. Zhong, S.S. Dou, J. Liu, D. Peng and T. Gao, First Integral Method and Exact Solutions to Nonlinear Partial Differential Equations Arising in Mathematical Physics, Romanian Reports in Physics, 64(4) (2013) 1155–1169 ZhangZ.Y. ZhongJ. DouS.S. LiuJ. PengD. GaoT. First Integral Method and Exact Solutions to Nonlinear Partial Differential Equations Arising in Mathematical Physics Romanian Reports in Physics 64 4 2013 1155 1169 Search in Google Scholar

H.M. Baskonus, T.A. Sulaiman and H. Bulut, On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics, Indian Journal of Physics, 93(3) (2019) 393–399 BaskonusH.M. SulaimanT.A. BulutH. On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics Indian Journal of Physics 93 3 2019 393 399 10.1007/s12648-018-1262-9 Search in Google Scholar

M.G. Hafez, M.N. Alam and M.A. Akbar, Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system, King Saud University Journal of King Saud University-Science, 27 (2015) 105–112 HafezM.G. AlamM.N. AkbarM.A. Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system King Saud University Journal of King Saud University-Science 27 2015 105 112 10.1016/j.jksus.2014.09.001 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo