Open Access

Dynamics of infectious diseases: A review of the main biological aspects and their mathematical translation


Cite

Abdelheq, M., Belhamiti, O., Bouzid, L., Trejos, D. Y., & Valverde, J. C. (2019). A predictive spatio-temporal model for bovine Babesiosis epidemic transmission. Journal of Theoretical Biology, 480, 192–204. AbdelheqM. BelhamitiO. BouzidL. TrejosD. Y. ValverdeJ. C. 2019 A predictive spatio-temporal model for bovine Babesiosis epidemic transmission Journal of Theoretical Biology 480 192 204 Search in Google Scholar

Allen, L. J. (1994). Some discrete-time SI, SIR, and SIS epidemic models. Mathematical Biosciences, 124(1), 83–105. AllenL. J. 1994 Some discrete-time SI, SIR, and SIS epidemic models Mathematical Biosciences 124 1 83 105 Search in Google Scholar

Allen, L. J. (2008). An introduction to stochastic epidemic models. In Mathematical epidemiology (pp. 81–130). Springer-Verlag, New York, Berlin, Heidelberg. AllenL. J. 2008 An introduction to stochastic epidemic models In Mathematical epidemiology 81 130 Springer-Verlag New York, Berlin, Heidelberg Search in Google Scholar

Allen, L. J., Brauer, F., van den Driessche, P., & Wu, J. (2008). Mathematical Epidemiology, Volume 1945 of Lecture Notes in Mathematics. Springer-Verlag, New York, Berlin, Heidelberg. AllenL. J. BrauerF. van den DriesscheP. WuJ. 2008 Mathematical Epidemiology, Volume 1945 of Lecture Notes in Mathematics Springer-Verlag New York, Berlin, Heidelberg Search in Google Scholar

Allen, L. J., & Burgin, A. M. (2000). Comparison of deterministic and stochastic SIS and SIR models in discrete-time. Mathematical Biosciences, 163(1), 1–33. AllenL. J. BurginA. M. 2000 Comparison of deterministic and stochastic SIS and SIR models in discrete-time Mathematical Biosciences 163 1 1 33 Search in Google Scholar

Allen, L. J., & Van den Driessche, P. (2008). The basic reproduction number in some discrete-time epidemic models. Journal of Difference Equations & Applications, 14(10–11), 1127–1147. AllenL. J. Van den DriesscheP. 2008 The basic reproduction number in some discrete-time epidemic models Journal of Difference Equations & Applications 14 10–11 1127 1147 Search in Google Scholar

Anderson, R. M., & May, R. M. (1992). Infectious diseases of humans: dynamics and control. Oxford University Press, London. AndersonR. M. MayR. M. 1992 Infectious diseases of humans: dynamics and control Oxford University Press London Search in Google Scholar

Andersson, H., & Britton, T. (2012). Stochastic epidemic models and their statistical analysis (Vol. 151). Springer-Verlag, New York. AnderssonH. BrittonT. 2012 Stochastic epidemic models and their statistical analysis 151 Springer-Verlag New York Search in Google Scholar

Andraud, M., Hens, N., Marais, C., & Beutels, P. (2012). Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PloS one, 7(11), e49085. AndraudM. HensN. MaraisC. BeutelsP. 2012 Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches PloS one 7 11 e49085 Search in Google Scholar

Apolloni, A., Poletto, C., Ramasco, J. J., Jensen, P., & Colizza, V. (2014). Metapopulation epidemic models with heterogeneous mixing and travel behaviour. Theoretical Biology & Medical Modelling, 11(1), 1–26. ApolloniA. PolettoC. RamascoJ. J. JensenP. ColizzaV. 2014 Metapopulation epidemic models with heterogeneous mixing and travel behaviour Theoretical Biology & Medical Modelling 11 1 1 26 Search in Google Scholar

Aranda, D. F., Trejos, D. Y., Valverde, J. C., & Villanueva, R. J. (2012). A mathematical model for Babesiosis disease in bovine and tick populations. Mathematical Methods in the Applied Sciences, 35(3), 249–256. ArandaD. F. TrejosD. Y. ValverdeJ. C. VillanuevaR. J. 2012 A mathematical model for Babesiosis disease in bovine and tick populations Mathematical Methods in the Applied Sciences 35 3 249 256 Search in Google Scholar

Aranda, D. F., Trejos, D. Y., & Valverde, J. C. (2017). A discrete epidemic model for bovine Babesiosis disease and tick populations. Open Physics, 15(1), 360–369. ArandaD. F. TrejosD. Y. ValverdeJ. C. 2017 A discrete epidemic model for bovine Babesiosis disease and tick populations Open Physics 15 1 360 369 Search in Google Scholar

Arenas, A. J., González-Parra, G., & Chen-Charpentier, B. M. (2010). A nonstandard numerical scheme of predictor-corrector type for epidemic models. Computers & Mathematics with Applications, 59(12), 3740–3749. ArenasA. J. González-ParraG. Chen-CharpentierB. M. 2010 A nonstandard numerical scheme of predictor-corrector type for epidemic models Computers & Mathematics with Applications 59 12 3740 3749 Search in Google Scholar

Arino, J. (2017). Spatio-temporal spread of infectious pathogens of humans. Infectious Disease Modelling, 2(2), 218–228. ArinoJ. 2017 Spatio-temporal spread of infectious pathogens of humans Infectious Disease Modelling 2 2 218 228 Search in Google Scholar

Agusto, F. B., Easley, S., Freeman, K., & Thomas, M. (2016). Mathematical model of three age-structured transmission dynamics of Chikungunya virus. Computational & Mathematical Methods in Medicine, Volume 2016, Article ID 4320514, https://doi.org/10.1155/2016/4320514. AgustoF. B. EasleyS. FreemanK. ThomasM. 2016 Mathematical model of three age-structured transmission dynamics of Chikungunya virus Computational & Mathematical Methods in Medicine 2016 Article ID 4320514, https://doi.org/10.1155/2016/4320514. Search in Google Scholar

Bacaer, N. (2011). A short history of mathematical population dynamics. Springer-Verlag, New York. BacaerN. 2011 A short history of mathematical population dynamics Springer-Verlag New York Search in Google Scholar

Bailey, N. T. (1975). The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13 6LE. BaileyN. T. 1975 The mathematical theory of infectious diseases and its applications Charles Griffin & Company Ltd 5a Crendon Street, High Wycombe, Bucks HP13 6LE Search in Google Scholar

Balibrea, F., Martinez, A., & Valverde, J. C. (2010). Local bifurcations of continuous dynamical systems under higher order conditions. Applied Mathematics Letters, 23(3), 230–234. BalibreaF. MartinezA. ValverdeJ. C. 2010 Local bifurcations of continuous dynamical systems under higher order conditions Applied Mathematics Letters 23 3 230 234 Search in Google Scholar

Balibrea, F., Oliveira, H. M., & Valverde, J. C. (2017). Topological equivalences for one-parameter bifurcations of scalar maps. Journal of Nonlinear Science, 27(2), 661–685. BalibreaF. OliveiraH. M. ValverdeJ. C. 2017 Topological equivalences for one-parameter bifurcations of scalar maps Journal of Nonlinear Science 27 2 661 685 Search in Google Scholar

Bansal, S., Grenfell, B. T., & Meyers, L. A. (2007). When individual behaviour matters: homogeneous and network models in epidemiology. Journal of the Royal Society Interface, 4(16), 879–891. BansalS. GrenfellB. T. MeyersL. A. 2007 When individual behaviour matters: homogeneous and network models in epidemiology Journal of the Royal Society Interface 4 16 879 891 Search in Google Scholar

Beraud, G. (2018). Mathematical models and vaccination strategies. Vaccine, 36(36), 5366–5372. BeraudG. 2018 Mathematical models and vaccination strategies Vaccine 36 36 5366 5372 Search in Google Scholar

Bian, L. (2013). Spatial approaches to modeling dispersion of communicable diseases-a review. Transactions in GIS, 17(1), 1–17. BianL. 2013 Spatial approaches to modeling dispersion of communicable diseases-a review Transactions in GIS 17 1 1 17 Search in Google Scholar

Bonyah, E., Badu, K., & Asiedu-Addo, S. K. (2016). Optimal control application to an Ebola model. Asian Pacific Journal of Tropical Biomedicine, 6(4), 283–289. BonyahE. BaduK. Asiedu-AddoS. K. 2016 Optimal control application to an Ebola model Asian Pacific Journal of Tropical Biomedicine 6 4 283 289 Search in Google Scholar

Brauer, F. (2004). Backward bifurcations in simple vaccination models. Journal of Mathematical Analysis & Applications, 298(2), 418–431. BrauerF. 2004 Backward bifurcations in simple vaccination models Journal of Mathematical Analysis & Applications 298 2 418 431 Search in Google Scholar

Brauer, F. (2017). A new epidemic model with indirect transmission. Journal of Biological Dynamics, 11(2), 285–293. BrauerF. 2017 A new epidemic model with indirect transmission Journal of Biological Dynamics 11 2 285 293 Search in Google Scholar

Brauer F. (2017) Mathematical epidemiology: Past, present, and future. Infectious Disease Modelling, 2, 113–127. BrauerF. 2017 Mathematical epidemiology: Past, present, and future Infectious Disease Modelling 2 113 127 Search in Google Scholar

Brauer, F., Castillo-Chavez, C., & Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology. Springer, New York. BrauerF. Castillo-ChavezC. Castillo-ChavezC. 2012 Mathematical models in population biology and epidemiology Springer New York Search in Google Scholar

Brauer, F., Castillo-Chavez, C., Mubayi, A., & Towers, S. (2016). Some models for epidemics of vector-transmitted diseases. Infectious Disease Modelling, 1(1), 79–87. BrauerF. Castillo-ChavezC. MubayiA. TowersS. 2016 Some models for epidemics of vector-transmitted diseases Infectious Disease Modelling 1 1 79 87 Search in Google Scholar

Brauer, F., Feng, Z., & Castillo-Chavez, C. (2010). Discrete epidemic models. Mathematical Biosciences & Engineering, 7(1), 1–15. BrauerF. FengZ. Castillo-ChavezC. 2010 Discrete epidemic models Mathematical Biosciences & Engineering 7 1 1 15 Search in Google Scholar

Brauer, F., Shuai, Z., & Van Den Driessche, P. (2013). Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 10(5–6), 1335–1349. BrauerF. ShuaiZ. Van Den DriesscheP. 2013 Dynamics of an age-of-infection cholera model Mathematical Biosciences & Engineering 10 5–6 1335 1349 Search in Google Scholar

Busenberg, S., Cooke, K., & Iannelli, M. (1988). Endemic thresholds and stability in a class of age-structured epidemics. SIAM Journal on Applied Mathematics, 48(6), 1379–1395. BusenbergS. CookeK. IannelliM. 1988 Endemic thresholds and stability in a class of age-structured epidemics SIAM Journal on Applied Mathematics 48 6 1379 1395 Search in Google Scholar

Busenberg, S., & Cooke, K. (2012). Vertically transmitted diseases: models and dynamics (Vol. 23). Springer-Verlag, New York, Berlin, Heidelberg. BusenbergS. CookeK. 2012 Vertically transmitted diseases: models and dynamics 23 Springer-Verlag New York, Berlin, Heidelberg Search in Google Scholar

Cao, H., & Zhou, Y. (2012). The discrete age-structured SEIT model with application to tuberculosis transmission in China. Mathematical & Computer Modelling, 55(3–4), 385–395. CaoH. ZhouY. 2012 The discrete age-structured SEIT model with application to tuberculosis transmission in China Mathematical & Computer Modelling 55 3–4 385 395 Search in Google Scholar

Capasso, V., & Serio, G. (1978). A generalization of the Kermack-McKendrick deterministic epidemic model. Mathematical Biosciences, 42(1–2), 43–61. CapassoV. SerioG. 1978 A generalization of the Kermack-McKendrick deterministic epidemic model Mathematical Biosciences 42 1–2 43 61 Search in Google Scholar

Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent–II. Geophysical Journal International, 13(5), 529–539. CaputoM. 1967 Linear models of dissipation whose Q is almost frequency independent–II Geophysical Journal International 13 5 529 539 Search in Google Scholar

Carvalho dos Santos J.P., Cardoso L. C., Monteiro E., & Lemes N.H.T. (2015). A fractional-order epidemic model for bovine Babesiosis disease and tick populations. Abstract Applied Analysis, Volume 2015, Article ID 729894. Carvalho dos SantosJ.P. CardosoL. C. MonteiroE. LemesN.H.T. 2015 A fractional-order epidemic model for bovine Babesiosis disease and tick populations Abstract Applied Analysis 2015 Article ID 729894. Search in Google Scholar

Castillo-Chavez, C., Castillo-Garsow, C. W., & Yakubu, A. A. (2003). Mathematical models of isolation and quarantine. JAMA, 290(21), 2876–2877. Castillo-ChavezC. Castillo-GarsowC. W. YakubuA. A. 2003 Mathematical models of isolation and quarantine JAMA 290 21 2876 2877 Search in Google Scholar

Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Mathematical Biosciences & Engineering, 1(2), 361–404. Castillo-ChavezC. SongB. 2004 Dynamical models of tuberculosis and their applications Mathematical Biosciences & Engineering 1 2 361 404 Search in Google Scholar

Chen, L., & Sun, J. (2014). Global stability of an SI epidemic model with feedback controls. Applied Mathematics Letters, 28, 53–55. ChenL. SunJ. 2014 Global stability of an SI epidemic model with feedback controls Applied Mathematics Letters 28 53 55 Search in Google Scholar

Chowell, G., Sattenspiel, L., Bansal, S., & Viboud, C. (2016). Mathematical models to characterize early epidemic growth: A review. Physics of Life Reviews, 18, 66–97. ChowellG. SattenspielL. BansalS. ViboudC. 2016 Mathematical models to characterize early epidemic growth: A review Physics of Life Reviews 18 66 97 Search in Google Scholar

Chudej, K., & Fischer, A. (2018). Optimal vaccination strategies for a new dengue model with two serotypes. IFAC-PapersOnLine, 51(2), 13–18. ChudejK. FischerA. 2018 Optimal vaccination strategies for a new dengue model with two serotypes IFAC-PapersOnLine 51 2 13 18 Search in Google Scholar

Dang, Q. A., Hoang, M. T., Trejos, D. Y., & Valverde, J. C. (2019). Feedback control variables to restrain the Babesiosis disease. Mathematical Methods in the Applied Sciences, 42(18), 7517–7527. DangQ. A. HoangM. T. TrejosD. Y. ValverdeJ. C. 2019 Feedback control variables to restrain the Babesiosis disease Mathematical Methods in the Applied Sciences 42 18 7517 7527 Search in Google Scholar

Dénes, A., & Gumel, A. B. (2019). Modeling the impact of quarantine during an outbreak of Ebola virus disease. Infectious Disease Modelling, 4, 12–27. DénesA. GumelA. B. 2019 Modeling the impact of quarantine during an outbreak of Ebola virus disease Infectious Disease Modelling 4 12 27 Search in Google Scholar

Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: model building, analysis and interpretation (Vol. 5). John Wiley & Sons, New York. DiekmannO. HeesterbeekJ. A. P. 2000 Mathematical epidemiology of infectious diseases: model building, analysis and interpretation 5 John Wiley & Sons New York Search in Google Scholar

Diekmann, O., Heesterbeek, H., & Britton, T. (2012). Mathematical tools for understanding infectious disease dynamics (Vol. 7). Princeton University Press, Princeton. DiekmannO. HeesterbeekH. BrittonT. 2012 Mathematical tools for understanding infectious disease dynamics 7 Princeton University Press Princeton Search in Google Scholar

Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. (1990). On the definition and the computation of the basic reproduction ratio 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4), 365–382. DiekmannO. HeesterbeekJ. A. P. MetzJ. A. 1990 On the definition and the computation of the basic reproduction ratio 0 in models for infectious diseases in heterogeneous populations Journal of Mathematical Biology 28 4 365 382 Search in Google Scholar

Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47), 873–885. DiekmannO. HeesterbeekJ. A. P. RobertsM. G. 2009 The construction of next-generation matrices for compartmental epidemic models Journal of the Royal Society Interface 7 47 873 885 Search in Google Scholar

Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Statistical Methods in Medical Research, 2(1), 23–41. DietzK. 1993 The estimation of the basic reproduction number for infectious diseases Statistical Methods in Medical Research 2 1 23 41 Search in Google Scholar

Doungmo E. F., Oukouomi S. C. & Mugisha S. (2014). A Fractional SEIR Epidemic Model for Spatial and Temporal Spread of Measles in Metapopulations. Abstract and Applied Analysis, Volume 2014, Article ID 781028. DoungmoE. F. OukouomiS. C. MugishaS. 2014 A Fractional SEIR Epidemic Model for Spatial and Temporal Spread of Measles in Metapopulations Abstract and Applied Analysis 2014 Article ID 781028. Search in Google Scholar

Duque, J. E. L., Navarro-Silva, M. A., & Trejos, D. Y. A. (2009). Simulating management of Aedes aegypti (Diptera: Culicidae) and its effects in a dengue epidemic | [Simulando manejo de Aedes aegypti (Diptera: Culicidae) y sus efectos en una epidemia de dengue]. Revista Colombiana de Entomologia, 35(1), 66–72. DuqueJ. E. L. Navarro-SilvaM. A. TrejosD. Y. A. 2009 Simulating management of Aedes aegypti (Diptera: Culicidae) and its effects in a dengue epidemic | [Simulando manejo de Aedes aegypti (Diptera: Culicidae) y sus efectos en una epidemia de dengue] Revista Colombiana de Entomologia 35 1 66 72 Search in Google Scholar

Edelstein-Keshet, L. (2005). Mathematical models in biology. Society for Industrial and Applied Mathematics, Vancouver. Edelstein-KeshetL. 2005 Mathematical models in biology Society for Industrial and Applied Mathematics Vancouver Search in Google Scholar

El-Saka, H. A. A. (2014). The fractional-order SIS epidemic model with variable population size. Journal of the Egyptian Mathematical Society, 22(1), 50–54. El-SakaH. A. A. 2014 The fractional-order SIS epidemic model with variable population size Journal of the Egyptian Mathematical Society 22 1 50 54 Search in Google Scholar

Fall, A., Iggidr, A., Sallet, G., & Tewa, J. J. (2007). Epidemiological models and Lyapunov functions. Mathematical Modelling of Natural Phenomena, 2(1), 62–83. FallA. IggidrA. SalletG. TewaJ. J. 2007 Epidemiological models and Lyapunov functions Mathematical Modelling of Natural Phenomena 2 1 62 83 Search in Google Scholar

Feckan, M. (2001). A generalization of Bendixson's criterion. Proceedings of the American Mathematical Society, 129(11), 3395–3399. FeckanM. 2001 A generalization of Bendixson's criterion Proceedings of the American Mathematical Society 129 11 3395 3399 Search in Google Scholar

Ferreira, J. D., Echeverry, L. M., & Rincon, C. A. P. (2017). Stability and bifurcation in epidemic models describing the transmission of toxoplasmosis in human and cat populations. Mathematical Methods in the Applied Sciences, 40(15), 5575–5592. FerreiraJ. D. EcheverryL. M. RinconC. A. P. 2017 Stability and bifurcation in epidemic models describing the transmission of toxoplasmosis in human and cat populations Mathematical Methods in the Applied Sciences 40 15 5575 5592 Search in Google Scholar

Foppa, I. M. (2017). A Historical Introduction to Mathematical Modeling of Infectious Diseases: Seminal Papers in Epidemiology. Academic Press, Amsterdam. FoppaI. M. 2017 A Historical Introduction to Mathematical Modeling of Infectious Diseases: Seminal Papers in Epidemiology Academic Press Amsterdam Search in Google Scholar

Fung, I. C. H. (2014). Cholera transmission dynamic models for public health practitioners. Emerging Themes in Epidemiology, 11(1), 1–11. FungI. C. H. 2014 Cholera transmission dynamic models for public health practitioners Emerging Themes in Epidemiology 11 1 1 11 Search in Google Scholar

González-Parra, G., Arenas, A. J., & Chen-Charpentier, B. M. (2014). A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1). Mathematical Methods in the Applied Sciences, 37(15), 2218–2226. González-ParraG. ArenasA. J. Chen-CharpentierB. M. 2014 A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1) Mathematical Methods in the Applied Sciences 37 15 2218 2226 Search in Google Scholar

González-Parra, G., & Benincasa, T. (2019). Mathematical modeling and numerical simulations of Zika in Colombia considering mutation. Mathematics & Computers in Simulation, 163, 1–18. González-ParraG. BenincasaT. 2019 Mathematical modeling and numerical simulations of Zika in Colombia considering mutation Mathematics & Computers in Simulation 163 1 18 Search in Google Scholar

González-Parra, G., Villanueva, R. J., Ruiz-Baragaño, J., & Moraño, J. A. (2015). Modelling influenza A (H1N1) 2009 epidemics using a random network in a distributed computing environment. Acta Tropica, 143, 29–35. González-ParraG. VillanuevaR. J. Ruiz-BaragañoJ. MorañoJ. A. 2015 Modelling influenza A (H1N1) 2009 epidemics using a random network in a distributed computing environment Acta Tropica 143 29 35 Search in Google Scholar

Goufo, E. F. D., Maritz, R., & Munganga, J. (2014). Some properties of the Kermack-McKendrick epidemic model with fractional derivative and nonlinear incidence. Advances in Difference Equations, 2014(1), 1–9. GoufoE. F. D. MaritzR. MungangaJ. 2014 Some properties of the Kermack-McKendrick epidemic model with fractional derivative and nonlinear incidence Advances in Difference Equations 2014 1 1 9 Search in Google Scholar

Gumel, A. B. (2012). Causes of backward bifurcations in some epidemiological models. Journal of Mathematical Analysis & Applications, 395(1), 355–365. GumelA. B. 2012 Causes of backward bifurcations in some epidemiological models Journal of Mathematical Analysis & Applications 395 1 355 365 Search in Google Scholar

Hadeler, K. P., Waldstätter, R., & Wörz-Busekros, A. (1988). Models for pair formation in bisexual populations. Journal of Mathematical Biology, 26(6), 635–649. HadelerK. P. WaldstätterR. Wörz-BusekrosA. 1988 Models for pair formation in bisexual populations Journal of Mathematical Biology 26 6 635 649 Search in Google Scholar

Hanski, I. (1997). Metapopulation dynamics: from concepts and observations to predictive models. In Metapopulation biology (pp. 69–91). Academic Press, Amsterdam. HanskiI. 1997 Metapopulation dynamics: from concepts and observations to predictive models In Metapopulation biology 69 91 Academic Press Amsterdam Search in Google Scholar

Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599–653. HethcoteH. W. 2000 The mathematics of infectious diseases SIAM Review 42 4 599 653 Search in Google Scholar

Hethcote, H. W., & Levin, S. A. (1989). Periodicity in epidemiological models. In Applied mathematical ecology. Springer, Berlin, Heidelberg. HethcoteH. W. LevinS. A. 1989 Periodicity in epidemiological models In Applied mathematical ecology Springer Berlin, Heidelberg Search in Google Scholar

Hethcote, H. W., & Yorke, J. A. (2014). Gonorrhea transmission dynamics and control (Vol. 56). Springer, New York, Berlin, Heidelberg. HethcoteH. W. YorkeJ. A. 2014 Gonorrhea transmission dynamics and control 56 Springer New York, Berlin, Heidelberg Search in Google Scholar

Hirsch, M. W., Smale, S., & Devaney, R. L. (2012). Differential equations, dynamical systems, and an introduction to chaos. Academic press, Amsterdam. HirschM. W. SmaleS. DevaneyR. L. 2012 Differential equations, dynamical systems, and an introduction to chaos Academic press Amsterdam Search in Google Scholar

Hove-Musekwa, S. D., Nyabadza, F., Chiyaka, C., Das, P., Tripathi, A., & Mukandavire, Z. (2011). Modelling and analysis of the effects of malnutrition in the spread of cholera. Mathematical & Computer Modelling, 53(9–10), 1583–1595. Hove-MusekwaS. D. NyabadzaF. ChiyakaC. DasP. TripathiA. MukandavireZ. 2011 Modelling and analysis of the effects of malnutrition in the spread of cholera Mathematical & Computer Modelling 53 9–10 1583 1595 Search in Google Scholar

Hu, Z., Teng, Z., & Jiang, H. (2012). Stability analysis in a class of discrete SIRS epidemic models. Nonlinear Analysis: Real World Applications, 13(5), 2017–2033. HuZ. TengZ. JiangH. 2012 Stability analysis in a class of discrete SIRS epidemic models Nonlinear Analysis: Real World Applications 13 5 2017 2033 Search in Google Scholar

Hu, Z., Teng, Z., and Zhang, L. (2014). Stability and bifurcation analysis in a discrete SIR epidemic model. Mathematics & Computers in Simulation, 97, 80–93. HuZ. TengZ. ZhangL. 2014 Stability and bifurcation analysis in a discrete SIR epidemic model Mathematics & Computers in Simulation 97 80 93 Search in Google Scholar

Hurwitz, A. (1964). On the conditions under which an equation has only roots with negative real parts. Selected papers on mathematical trends in control theory, 65, 273–284. HurwitzA. 1964 On the conditions under which an equation has only roots with negative real parts Selected papers on mathematical trends in control theory 65 273 284 Search in Google Scholar

Iggidr, A., and Bensoubaya, M (1998). New Results on the Stability of Discrete-Time Systems and Applications to Control Problems. Journal of Mathematical Analysis & Applications 219, 392–414. IggidrA. BensoubayaM 1998 New Results on the Stability of Discrete-Time Systems and Applications to Control Problems Journal of Mathematical Analysis & Applications 219 392 414 Search in Google Scholar

Inaba, H. (2006). Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems-B, 6(1), 69–96. InabaH. 2006 Mathematical analysis of an age-structured SIR epidemic model with vertical transmission Discrete & Continuous Dynamical Systems-B 6 1 69 96 Search in Google Scholar

Jang, S., & Elaydi, S. (2003). Difference equations from discretization of a continuous epidemic model with immigration of infectives. Canadian Applied Math Quarterly, 11(1), 93–105. JangS. ElaydiS. 2003 Difference equations from discretization of a continuous epidemic model with immigration of infectives Canadian Applied Math Quarterly 11 1 93 105 Search in Google Scholar

Jódar, L., Villanueva, R. J., & Arenas, A. (2008). Modeling the spread of seasonal epidemiological diseases: theory and applications. Mathematical & Computer Modelling, 48(3–4), 548–557. JódarL. VillanuevaR. J. ArenasA. 2008 Modeling the spread of seasonal epidemiological diseases: theory and applications Mathematical & Computer Modelling 48 3–4 548 557 Search in Google Scholar

Jury, E. I. (1962). A simplified stability criterion for linear discrete systems. Proceedings of the IRE, 50(6), 1493–1500. JuryE. I. 1962 A simplified stability criterion for linear discrete systems Proceedings of the IRE 50 6 1493 1500 Search in Google Scholar

Keeling, M. J., & Eames, K. T. (2005). Networks and epidemic models. Journal of the Royal Society Interface, 2(4), 295–307. KeelingM. J. EamesK. T. 2005 Networks and epidemic models Journal of the Royal Society Interface 2 4 295 307 Search in Google Scholar

Keeling, M. J., & Rohani, P. (2011). Modeling infectious diseases in humans and animals. Princeton University Press, Princeton. KeelingM. J. RohaniP. 2011 Modeling infectious diseases in humans and animals Princeton University Press Princeton Search in Google Scholar

Kelatlhegile, G. R., & Kgosimore, M. (2016). Bifurcation analysis of vertical transmission model with preventive strategy. Journal of the Egyptian Mathematical Society, 24(3), 492–498. KelatlhegileG. R. KgosimoreM. 2016 Bifurcation analysis of vertical transmission model with preventive strategy Journal of the Egyptian Mathematical Society 24 3 492 498 Search in Google Scholar

Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, 115(772), 700–721. KermackW. O. McKendrickA. G. 1927 A contribution to the mathematical theory of epidemics Proceedings of the Royal Society of London. Series A 115 772 700 721 Search in Google Scholar

Kermack, W. O., & McKendrick, A. G. (1932). Contributions to the mathematical theory of epidemics II. The problem of endemicity. Proceedings of the Royal Society of London. Series A, 138(834), 55–83. KermackW. O. McKendrickA. G. 1932 Contributions to the mathematical theory of epidemics II. The problem of endemicity Proceedings of the Royal Society of London. Series A 138 834 55 83 Search in Google Scholar

Kermack, W. O., & McKendrick, A. G. (1933). Contributions to the mathematical theory of epidemics III. Further studies of the problem of endemicity. Proceedings of the Royal Society of London. Series A, 141(843), 94–122. KermackW. O. McKendrickA. G. 1933 Contributions to the mathematical theory of epidemics III. Further studies of the problem of endemicity Proceedings of the Royal Society of London. Series A 141 843 94 122 Search in Google Scholar

Kramer, A., Kretzschmar, M., & Krickeberg, K. (Eds.). (2010). Modern infectious disease epidemiology: Concepts, methods, mathematical models, and public health. Springer-Verlag, New York. KramerA. KretzschmarM. KrickebergK. (Eds.). 2010 Modern infectious disease epidemiology: Concepts, methods, mathematical models, and public health Springer-Verlag New York Search in Google Scholar

Kuznetsov, Y.A. (2004). Elements of Applied Bifurcation Theory, Third Edition. Springer-Verlag, New York. KuznetsovY.A. 2004 Elements of Applied Bifurcation Theory Third Edition Springer-Verlag New York Search in Google Scholar

Lemos-Paiao, A. P., Silva, C. J., Torres, D. F., & Venturino, E. (2020). Optimal control of aquatic diseases: A case study of Yemen's cholera outbreak. Journal of Optimization Theory & Applications, 185, 1008–1030. Lemos-PaiaoA. P. SilvaC. J. TorresD. F. VenturinoE. 2020 Optimal control of aquatic diseases: A case study of Yemen's cholera outbreak Journal of Optimization Theory & Applications 185 1008 1030 Search in Google Scholar

Levy, B., Edholm, C., Gaoue, O., Kaondera-Shava, R., Kgosimore, M., Lenhart, S., ... & Nyabadza, F. (2017). Modeling the role of public health education in Ebola virus disease outbreaks in Sudan. Infectious Disease Modelling, 2(3), 323–340. LevyB. EdholmC. GaoueO. Kaondera-ShavaR. KgosimoreM. LenhartS. NyabadzaF. 2017 Modeling the role of public health education in Ebola virus disease outbreaks in Sudan Infectious Disease Modelling 2 3 323 340 Search in Google Scholar

Lewis, M., Renclawowicz, J., & Van den Driessche, P. (2006). Traveling waves and spread rates for a West Nile virus model. Bulletin of Mathematical Biology, 68(1), 3–23. LewisM. RenclawowiczJ. Van den DriesscheP. 2006 Traveling waves and spread rates for a West Nile virus model Bulletin of Mathematical Biology 68 1 3 23 Search in Google Scholar

Li, Y., & Muldowney, J. S. (1993). On Bendixson’ s Criterion. Journal of Differential Equations, 106(1), 27–39. LiY. MuldowneyJ. S. 1993 On Bendixson’ s Criterion Journal of Differential Equations 106 1 27 39 Search in Google Scholar

Mandal, S., Sarkar, R. R., & Sinha, S. (2011). Mathematical models of malaria-a review. Malaria Journal, 10(1), 1–19. MandalS. SarkarR. R. SinhaS. 2011 Mathematical models of malaria-a review Malaria Journal 10 1 1 19 Search in Google Scholar

Martcheva, M. (2015). An introduction to mathematical epidemiology (Vol. 61). Springer, New York. MartchevaM. 2015 An introduction to mathematical epidemiology 61 Springer New York Search in Google Scholar

Macdonald, G. (1957). The Epidemiology and Control of Malaria. Oxford University Press, London. MacdonaldG. 1957 The Epidemiology and Control of Malaria Oxford University Press London Search in Google Scholar

McKendrick, A. G. (1926). Applications of mathematics to medical problems. Proceedings of the Edinburgh Mathematical Society, 44, 98–130. McKendrickA. G. 1926 Applications of mathematics to medical problems Proceedings of the Edinburgh Mathematical Society 44 98 130 Search in Google Scholar

Meyers, L. (2007). Contact network epidemiology: Bond percolation applied to infectious disease prediction and control. Bulletin of the American Mathematical Society, 44(1), 63–86. MeyersL. 2007 Contact network epidemiology: Bond percolation applied to infectious disease prediction and control Bulletin of the American Mathematical Society 44 1 63 86 Search in Google Scholar

Meyers L., A., Newman M., E., Martin M., & Schrag S. (2003). Applying network theory to epidemics: control measures for Mycoplasma pneumoniae outbreaks. Emerging Infectious Diseases, 9(2), 204–210. MeyersL. A. NewmanM. E. MartinM. SchragS. 2003 Applying network theory to epidemics: control measures for Mycoplasma pneumoniae outbreaks Emerging Infectious Diseases 9 2 204 210 Search in Google Scholar

Moreno, V. M., Espinoza, B., Bichara, D., Holechek, S. A., & Castillo-Chavez, C. (2017). Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment. Infectious Disease Modelling, 2(1), 21–34. MorenoV. M. EspinozaB. BicharaD. HolechekS. A. Castillo-ChavezC. 2017 Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment Infectious Disease Modelling 2 1 21 34 Search in Google Scholar

Murray, J. D. (2007). Mathematical biology: I. An introduction (Vol. 17). Springer-Verlag, New York, Berlin, Heidelberg. MurrayJ. D. 2007 Mathematical biology: I. An introduction 17 Springer-Verlag New York, Berlin, Heidelberg Search in Google Scholar

Newman, M. (2018). Networks. Oxford University Press, London. NewmanM. 2018 Networks Oxford University Press London Search in Google Scholar

Okyere, E., Oduro, F. T., Amponsah, S. K., & Dontwi, I. K. (2016). Fractional order optimal control model for malaria infection. arXiv preprint arXiv:1607.01612. OkyereE. OduroF. T. AmponsahS. K. DontwiI. K. 2016 Fractional order optimal control model for malaria infection arXiv preprint arXiv:1607.01612. Search in Google Scholar

Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925. Pastor-SatorrasR. CastellanoC. Van MieghemP. VespignaniA. 2015 Epidemic processes in complex networks Reviews of Modern Physics 87 3 925 Search in Google Scholar

Perez, L., & Dragicevic, S. (2009). An agent-based approach for modeling dynamics of contagious disease spread. International Journal of Health Geographics, 8(1), 1–17. PerezL. DragicevicS. 2009 An agent-based approach for modeling dynamics of contagious disease spread International Journal of Health Geographics 8 1 1 17 Search in Google Scholar

Perko, L. (2001). Differential equations and dynamical systems, 3rd edition. Texts in Applied Mathematics, Volume 7. Springer-Verlag, New York. PerkoL. 2001 Differential equations and dynamical systems 3rd edition Texts in Applied Mathematics 7 Springer-Verlag New York Search in Google Scholar

Postnikov, E. B., & Sokolov, I. M. (2007). Continuum description of a contact infection spread in a SIR model. Mathematical Biosciences, 208(1), 205–215. PostnikovE. B. SokolovI. M. 2007 Continuum description of a contact infection spread in a SIR model Mathematical Biosciences 208 1 205 215 Search in Google Scholar

Rahman, S. A., Vaidya, N. K., & Zou, X. (2016). Impact of early treatment programs on HIV epidemics: an immunity-based mathematical model. Mathematical Biosciences, 280, 38–49. RahmanS. A. VaidyaN. K. ZouX. 2016 Impact of early treatment programs on HIV epidemics: an immunity-based mathematical model Mathematical Biosciences 280 38 49 Search in Google Scholar

Rass, L., & Radcliffe, J. (2003). Spatial deterministic epidemics (Vol. 102). American Mathematical Society, Rhode Island. RassL. RadcliffeJ. 2003 Spatial deterministic epidemics 102 American Mathematical Society Rhode Island Search in Google Scholar

Ross, R. (1911). The prevention of malaria, 2nd Edition. John Murray, London. RossR. 1911 The prevention of malaria 2nd Edition John Murray London Search in Google Scholar

Routh, E. J. (1877). A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion: Being the Essay to which the Adams Prize was Adjudged in 1877, in the University of Cambridge. Macmillan and Company, Cambridge. RouthE. J. 1877 A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion: Being the Essay to which the Adams Prize was Adjudged in 1877, in the University of Cambridge Macmillan and Company Cambridge Search in Google Scholar

Saad-Roy, C. M., Shuai, Z., & Van den Driessche, P. (2015). Models of bovine babesiosis including juvenile cattle. Bulletin of Mathematical Biology, 77(3), 514–547. Saad-RoyC. M. ShuaiZ. Van den DriesscheP. 2015 Models of bovine babesiosis including juvenile cattle Bulletin of Mathematical Biology 77 3 514 547 Search in Google Scholar

Saad-Roy, C. M., Shuai, Z., & van den Driessche, P. (2016). A mathematical model of syphilis transmission in an MSM population. Mathematical Biosciences, 277, 59–70. Saad-RoyC. M. ShuaiZ. van den DriesscheP. 2016 A mathematical model of syphilis transmission in an MSM population Mathematical Biosciences 277 59 70 Search in Google Scholar

Saad-Roy, C. M., Van den Driessche, P., & Yakubu, A. A. (2017). A mathematical model of anthrax transmission in animal populations. Bulletin of Mathematical Biology, 79(2), 303–324. Saad-RoyC. M. Van den DriesscheP. YakubuA. A. 2017 A mathematical model of anthrax transmission in animal populations Bulletin of Mathematical Biology 79 2 303 324 Search in Google Scholar

Salman, S. M., & Ahmed, E. (2018). A mathematical model for Creutzfeldt Jacob Disease (CJD). Chaos, Solitons & Fractals, 116, 249–260. SalmanS. M. AhmedE. 2018 A mathematical model for Creutzfeldt Jacob Disease (CJD) Chaos, Solitons & Fractals 116 249 260 Search in Google Scholar

Sardar, T., Rana, S., & Chattopadhyay, J. (2015). A mathematical model of dengue transmission with memory. Communications in Nonlinear Science and Numerical Simulation, 22(1–3), 511–525. SardarT. RanaS. ChattopadhyayJ. 2015 A mathematical model of dengue transmission with memory Communications in Nonlinear Science and Numerical Simulation 22 1–3 511 525 Search in Google Scholar

Schreppel, C., & Chudej, K. (2018). Numerical optimal control applied to an epidemiological model. IFAC-PapersOnLine, 51(2), 1–6. SchreppelC. ChudejK. 2018 Numerical optimal control applied to an epidemiological model IFAC-PapersOnLine 51 2 1 6 Search in Google Scholar

Sepulveda, L. S., & Vasilieva, O. (2016). Optimal control approach to dengue reduction and prevention in Cali, Colombia. Mathematical Methods in the Applied Sciences, 39(18), 5475–5496. SepulvedaL. S. VasilievaO. 2016 Optimal control approach to dengue reduction and prevention in Cali, Colombia Mathematical Methods in the Applied Sciences 39 18 5475 5496 Search in Google Scholar

Shuai, Z., & Van den Driessche, P. (2013). Global stability of infectious disease models using Lyapunov functions. SIAM Journal on Applied Mathematics, 73(4), 1513–1532. ShuaiZ. Van den DriesscheP. 2013 Global stability of infectious disease models using Lyapunov functions SIAM Journal on Applied Mathematics 73 4 1513 1532 Search in Google Scholar

Smith, R. A. (1981). An index theorem and Bendixson's negative criterion for certain differential equations of higher dimension. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 91(1–2), 63–77. SmithR. A. 1981 An index theorem and Bendixson's negative criterion for certain differential equations of higher dimension Proceedings of the Royal Society of Edinburgh Section A: Mathematics 91 1–2 63 77 Search in Google Scholar

Smith, R. (2011). An age-structured model of human papillomavirus vaccination. Mathematics & Computers in Simulation, 82(4), 629–652. SmithR. 2011 An age-structured model of human papillomavirus vaccination Mathematics & Computers in Simulation 82 4 629 652 Search in Google Scholar

Song, L. P., Jin, Z., & Sun, G. Q. (2011). Reinfection induced disease in a spatial SIRI model. Journal of Biological Physics, 37(1), 133–140. SongL. P. JinZ. SunG. Q. 2011 Reinfection induced disease in a spatial SIRI model Journal of Biological Physics 37 1 133 140 Search in Google Scholar

Teng, Z., Nie, L., & Xu, J. (2013). Dynamical behaviors of a discrete SIS epidemic model with standard incidence and stage structure. Advances in Difference Equations, 2013(1), 1–23. TengZ. NieL. XuJ. 2013 Dynamical behaviors of a discrete SIS epidemic model with standard incidence and stage structure Advances in Difference Equations 2013 1 1 23 Search in Google Scholar

Thomas, D. M., & Urena, B. (2001). A model describing the evolution of West Nile-like encephalitis in New York City. Mathematical and Computer Modelling, 34(7–8), 771–781. ThomasD. M. UrenaB. 2001 A model describing the evolution of West Nile-like encephalitis in New York City Mathematical and Computer Modelling 34 7–8 771 781 Search in Google Scholar

Towers, S., Brauer, F., Castillo-Chavez, C., Falconar, A. K., Mubayi, A., & Romero-Vivas, C. M. (2016). Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics, 17, 50–55. TowersS. BrauerF. Castillo-ChavezC. FalconarA. K. MubayiA. Romero-VivasC. M. 2016 Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission Epidemics 17 50 55 Search in Google Scholar

Trejos, D. Y., & Duarte, I. (2005). Un modelo matemático de la propagación de Toxoplasma gondii (Nicolle y Manceaux, 1909), a través de gatos. Actualidades Biológicas, 27(83), 143–149. TrejosD. Y. DuarteI. 2005 Un modelo matemático de la propagación de Toxoplasma gondii (Nicolle y Manceaux, 1909), a través de gatos Actualidades Biológicas 27 83 143 149 Search in Google Scholar

Ullah, R., Zaman, G., & Islam, S. (2014). Multiple control strategies for prevention of avian influenza pandemic. The Scientific World Journal, Volume 2014, Article ID 949718, https://doi.org/10.1155/2014/949718. UllahR. ZamanG. IslamS. 2014 Multiple control strategies for prevention of avian influenza pandemic The Scientific World Journal 2014 Article ID 949718, https://doi.org/10.1155/2014/949718. Search in Google Scholar

Valverde, J.C. (2003). Simplest normal forms of Hopf-Neimark-Sacker bifurcations. International Journal of Bifurcation & Chaos, 13, 1831–1839. ValverdeJ.C. 2003 Simplest normal forms of Hopf-Neimark-Sacker bifurcations International Journal of Bifurcation & Chaos 13 1831 1839 Search in Google Scholar

Valverde, J. C., Pelayo, F. L., Martinez, J. A., & Miralles, J. J. (2004). Stability of continuous systems by Routh-Hurwitz and mathematica. Journal of Computational Methods in Sciences & Engineering, 4(1–2), 125–134. ValverdeJ. C. PelayoF. L. MartinezJ. A. MirallesJ. J. 2004 Stability of continuous systems by Routh-Hurwitz and mathematica Journal of Computational Methods in Sciences & Engineering 4 1–2 125 134 Search in Google Scholar

Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48. Van den DriesscheP. WatmoughJ. 2002 Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Mathematical Biosciences 180 1–2 29 48 Search in Google Scholar

Van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288–303. Van den DriesscheP. 2017 Reproduction numbers of infectious disease models Infectious Disease Modelling 2 3 288 303 Search in Google Scholar

Venturino, E. (1985). A generalization of the classical epidemiology model, IMACS Transactions on Scientific Computation ’85, vol. 5 — Modelling of Biomedical Systems, North-Holland, Amsterdam, pp. 243–248. VenturinoE. 1985 A generalization of the classical epidemiology model IMACS Transactions on Scientific Computation ’85 5 Modelling of Biomedical Systems North-Holland, Amsterdam 243 248 Search in Google Scholar

Venturino, E. (2016). Ecoepidemiology: a more comprehensive view of population interactions. Mathematical Modelling of Natural Phenomena, 11(1), 49–90, 2016. VenturinoE. 2016 Ecoepidemiology: a more comprehensive view of population interactions Mathematical Modelling of Natural Phenomena 11 1 49 90 2016 Search in Google Scholar

Villanueva, R. J., Arenas, A. J., & González-Parra, G. (2008). A nonstandard dynamically consistent numerical scheme applied to obesity dynamics. Journal of Applied Mathematics, Volume 2008, Article ID 640154, https://doi.org/10.1155/2008/640154 VillanuevaR. J. ArenasA. J. González-ParraG. 2008 A nonstandard dynamically consistent numerical scheme applied to obesity dynamics Journal of Applied Mathematics 2008 Article ID 640154, https://doi.org/10.1155/2008/640154 Search in Google Scholar

Wang, Y., & Cao, J. (2014). Global dynamics of a network epidemic model for waterborne diseases spread. Applied Mathematics & Computation, 237, 474–488. WangY. CaoJ. 2014 Global dynamics of a network epidemic model for waterborne diseases spread Applied Mathematics & Computation 237 474 488 Search in Google Scholar

Wang, Y., Jin, Z., Yang, Z., Zhang, Z. K., Zhou, T., & Sun, G. Q. (2012). Global analysis of an SIS model with an infective vector on complex networks. Nonlinear Analysis: Real World Applications, 13(2), 543–557. WangY. JinZ. YangZ. ZhangZ. K. ZhouT. SunG. Q. 2012 Global analysis of an SIS model with an infective vector on complex networks Nonlinear Analysis: Real World Applications 13 2 543 557 Search in Google Scholar

Zhou, Y., Ma, Z., & Brauer, F. (2004). A discrete epidemic model for SARS transmission and control in China. Mathematical and Computer Modelling, 40(13), 1491–1506. ZhouY. MaZ. BrauerF. 2004 A discrete epidemic model for SARS transmission and control in China Mathematical and Computer Modelling 40 13 1491 1506 Search in Google Scholar

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics