1. bookVolume 6 (2021): Issue 2 (July 2021)
Journal Details
License
Format
Journal
eISSN
2444-8656
First Published
01 Jan 2016
Publication timeframe
2 times per year
Languages
English
Open Access

New Principles of Non-Linear Integral Inequalities on Time Scales

Published Online: 18 Jan 2021
Volume & Issue: Volume 6 (2021) - Issue 2 (July 2021)
Page range: 387 - 394
Received: 10 Apr 2020
Accepted: 18 Oct 2020
Journal Details
License
Format
Journal
eISSN
2444-8656
First Published
01 Jan 2016
Publication timeframe
2 times per year
Languages
English
Introduction

For a quarter century, the theory of time scales has played an important role in the representation of differential calculus and integral inequalities. The concept of time scales was introduced by Stefan Hilger in 1988 [1]. Later, this theory was studied by many authors. They have demonstrated various aspects of integral inequalities [2,3,4,5,6,7,8,9,10,11,12,13]. Dynamic equations and inequalities have many applications to quantum mechanics, phsical problems, wave equations, heat transfer and economic problems [26, 27, 28, 29]. For example; Aly R. Seadawy et al. have done a lot of research on the applications of dynamic equations in physics. As a result of these studies, they achieved good results [30]. The most important examples of time scale studies are differential calculus and inequalities [12]. Wong et al. [6, 7] expressed some time scale integral inequalities. Yang [13] obtained a generalization of the ⋄α-integral Hölder's inequality in time scales. Recently, Li Yin and Feng Qi [24] have introduced some non-linear integral inequalities under certain conditions.

Our aim of this article is to demonstrate new principles of non-linear integral inequalities in time scales via the ∇-integral and the ⋄α-integral.

Auxiliary Statements and Definitions

Now, let us briefly give information about time scales and give the necessary definitions and notations for our article. For more details, we refer the reader to the articles [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25].

Let ω be a weight function on R, i.e., ω is a non-negative, almost everywhere positive on R and ∫R ω(y)∇y < ∞.

Let σ(t) be the forward jump operator and let ρ(t) be the backward jump operator in T (T is time scale) for tT. Respectively, they are defined by σ(t)=inf{sT:s>t} \sigma (t) = \inf \{ s \in T:s > t\} and ρ(t)=sup{sT:s>t}. \rho (t) = \sup \{ s \in T:s > t\} .

If σ : TT, σ(t) > t, then t is right-scattered. If ρ : TT, ρ(t) < t, then t is left-scattered. And, if σ : TT,σ(t) = t, then t is called right-dense, and if ρ : TT, ρ(t) = t, then t is called left-dense. Let two mappings μ,υ : TR+ such that μ(t) = σ(t) − t,υ (t) = tρ(t) are called graininess mappings. If T has a left-scattered maximum uR, then Tk = T /u. If not Tk = T. Briefly

If supT < ∞, then Tk = [ρ supT,supT ] and if supT = ∞, then Tk = T. By the same way

If |infT | < ∞, then Tk = [infT,σ infT ] and if infT = −∞, then Tk = T. Let f : TR and f σ : TR by f σ (t) = f (σ(t)) for ∀tT, i.e., f σ = fσ. And let f : TR and f ρ : TR by f ρ(t) = f (ρ(t)) for ∀tT, i.e., f ρ = fρ.

Assume that h : TR,tTk(tminT).

Let h is Δ-differentiable at point t and h is continuous at point t.

Let h is left continuous at point t. t is right-scattered and h is Δ-differentiable at point t, hΔ(t)=(hσ(t)h(t))/μ(t) {h^\Delta }(t) = ({h^\sigma }(t) - h(t))/\mu (t)

Let t is right-dense, h is Δ-differentiable at point t and limsth(t)h(s)ts \mathop {\lim }\limits_{s \to t} {{h(t) - h(s)} \over {t - s}} then hΔ(t)=limsth(t)h(s)ts {h^\Delta }(t) = \mathop {\lim }\limits_{s \to t} {{h(t) - h(s)} \over {t - s}}

Let h is Δ-differentiable at point t, then hσ(t)=h(t)+μ(t)hΔ(t). {h^\sigma }(t) = h(t) + \mu (t){h^\Delta }(t).

Definition 2.1

[12] H : TR is called a Δ-antiderivative of h : TR. HΔ = h(t) holds for ∀s,tT. We define the Δ-integral of h by sth(τ)Δτ=H(t)H(s) \int_s^t h(\tau )\Delta \tau = H(t) - H(s) for s,tT.

Definition 2.2

[14] Let h : TkR is called a ∇-differentiable at tTk,h(t), if ɛ > 0 then there exists a neighborhood V of t such that |h(ρ(t))h(s)h(t)(ρ(t)s)|ε|ρ(t)s| |h(\rho (t)) - h(s) - {h^\nabla }(t)(\rho (t) - s)| \le \varepsilon |\rho (t) - s| for ∀sV.

Assume that h : TR,tTk (tmaxT).

Let h is ∇-differentiable at point t and h is continuous at point t.

Let h is right continuous at point t. t is leftt-scattered and h is ∇-differentiable at point t, h(t)=h(t)hρ(t)ν(t) {h^\nabla }(t) = {{h(t) - {h^\rho }(t)} \over {\nu (t)}}

Let t is left-dense, h is ∇-differentiable at point t and limsth(t)h(s)ts \mathop {\lim }\limits_{s \to t} {{h(t) - h(s)} \over {t - s}} then h(t)=limsth(t)h(s)ts {h^\nabla }(t) = \mathop {\lim }\limits_{s \to t} {{h(t) - h(s)} \over {t - s}}

Let h is ∇-differentiable at point t, then hρ(t)=h(t)ϑ(t)h(t). {h^\rho }(t) = h(t) - \vartheta (t){h^\nabla }(t).

Definition 2.3

[14] H : TR is called a ∇-antiderivative of h : TR. H = h(t) holds for ∀s,tT. Then, we define the ∇-integral of h by sth(τ)τ=H(t)H(s) \int_s^t h(\tau )\nabla \tau = H(t) - H(s) for s,tT.

Let h(t) be differentiable on T. And let b,tT. Then, ha(t)=bhΔ(t)+(1b)h(t),0b1. {h^{{\diamondsuit _a}}}(t) = b{h^\Delta }(t) + (1 - b){h^\nabla }(t),\quad \quad 0 \le b \le 1.

Proposition 2.4

[15] If we get f, g : TR, ⋄a-differentiable at tT, then

(f + g)a (t) = f a (t) + ga (t)

If cR, then (c f )a (t) = c f a (t).

(f g)a (t) = f a (t)g(t) + b f σ (t)gΔ(t) + (1 − b) f ρ(t)g(t).

Definition 2.5

[15] If we get b,tT, f : TR, then btf(γ)aγ=bbtf(γ)Δγ+(1b)btf(γ)γ,0b1. \int_b^t f(\gamma ){\diamondsuit _a}\gamma = b\int_b^t f(\gamma )\Delta \gamma + (1 - b)\int_b^t f(\gamma )\nabla \gamma ,\quad \quad 0 \le b \le 1.

Proposition 2.6

[15] Let u,v,tT, cR and if f (γ),g(γ) are ⋄a-integrable functions on [u,v]T, then the following statements are valid.

ut[f(γ)+g(γ)]aγ=utf(γ)aγ+utg(γ)aγ, \int_u^t [f(\gamma ) + g(\gamma )]{\diamondsuit _a}\gamma = \int_u^t f(\gamma ){\diamondsuit _a}\gamma + \int_u^t g(\gamma ){\diamondsuit _a}\gamma ,

utcf(γ)aγ=cutf(γ)aγ, \int_u^t cf(\gamma ){\diamondsuit _a}\gamma = c\int_u^t f(\gamma ){\diamondsuit _a}\gamma ,

utf(γ)aγ=tuf(γ)aγ, \int_u^t f(\gamma ){\diamondsuit _a}\gamma = - \int_t^u f(\gamma ){\diamondsuit _a}\gamma ,

utf(γ)aγ=uvf(γ)aγ+vtf(γ)aγ, \int_u^t f(\gamma ){\diamondsuit _a}\gamma = \int_u^v f(\gamma ){\diamondsuit _a}\gamma + \int_v^t f(\gamma ){\diamondsuit _a}\gamma ,

uuf(γ)aγ=0. \int_u^u f(\gamma ){\diamondsuit _a}\gamma = 0.

Lemma 2.7

[15] Let u,v,tT with u < v. Suppose that h(γ) and g(γ) are ⋄a-integrable functions on [u,v]T, then the following statements are valid.

If h(γ) ≥ 0 for ∀γ ∈ [u,v]T, then uvh(γ)aγ0 \int_u^v h(\gamma ){\diamondsuit _a}\gamma \ge 0 .

If h(γ) ≤ g(γ) for ∀γ ∈ [u,v]T, then uvh(γ)aγuvg(γ)aγ \int_u^v h(\gamma ){\diamondsuit _a}\gamma \le \int_u^v g(\gamma ){\diamondsuit _a}\gamma .

If h(γ) ≥ 0 for ∀γ ∈ [u,v]T, then h(γ) = 0 iff uvh(γ)aγ=0 \int_u^v h(\gamma ){\diamondsuit _a}\gamma = 0 .

Lemma 2.8

(For details, Lemma 2.5 in [24]) Let p > 1 or q < 0, while 1/p + 1/q = 1, if g,hCrd(T,R), g(y) > 0,h(y) > 0, while u,vT, then uv[g(y)]p[h(y)]p/qΔy(uvg(y)Δy)p(uvh(y)Δy)p/q. \int_u^v {{{{[g(y)]}^p}} \over {{{[h(y)]}^{p/q}}}}\Delta y \ge {{{{(\int_u^v g(y)\Delta y)}^p}} \over {{{(\int_u^v h(y)\Delta y)}^{p/q}}}}.

Qi F. et al. [25] proved some inequalities under the condition of Δ-differentiable. In the next section, we will prove these inequalities under the conditions of the ∇-differentiable and the ⋄a-differentiable.

Main Result

In this section, we will prove non-linear ∇-differentiable weighted integral inequalities under certain conditions. Later, we will prove their ⋄a-differentiable extensions. We have listed these studies in the references of the article for the relevant readers.

Theorem 3.1

Let h,wCrd(T,R) and let w be a weight function and let w(y),h(y) > 0, uvh(y)w(y)y< \int_u^v h(y)w(y)\nabla y < \infty and p > 1 or q < 0, while 1/p + 1/q = 1. If uvw(y)h(y)(vu)p1 \int_u^v w(y)h(y) \ge {(v - u)^{p - 1}} , while u,vT, then uv[h(y)w(y)]py(uvh(y)w(y)y)p1. \int_u^v {[h(y)w(y)]^p}\nabla y \ge {\left( {\int_u^v h(y)w(y)\nabla y} \right)^{p - 1}}.

Proof

Using Lemma 2.8, we obtain uv[h(y)w(y)]py=uv[h(y)w(y)]p1p1y[uvh(y)w(y)y]p[uv1y]p1(uvh(y)w(y)y)p1. \int_u^v {[h(y)w(y)]^p}\nabla y = \int_u^v {{{{[h(y)w(y)]}^p}} \over {{1^{p - 1}}}}\nabla y \ge {{{{[\int_u^v h(y)w(y)\nabla y]}^p}} \over {{{[\int_u^v 1\nabla y]}^{p - 1}}}} \ge {\left( {\int_u^v h(y)w(y)\nabla y} \right)^{p - 1}}.

Theorem 3.2

Let w be a weight function, w(y),g(y) > 0, uvg(y)w(y)y< \int_u^v g(y)w(y)\nabla y < \infty for y ∈ (u,v]and g,wC([u,v],R),∇-differantiable in (u,v),Let ɛ,ϕ be positive real numbers such that 1 < ϕ < ɛ. If [(wg)(εφ)/(φ1)(y)](εφ)φ1/(φ1)ε1 {\left[ {{{(wg)}^{(\varepsilon - \varphi )/(\varphi - 1)}}(y)} \right]}^\prime \ge {{(\varepsilon - \varphi ){\varphi ^{1/(\varphi - 1)}}} \over {\varepsilon - 1}} fory ∈ (u,v), then uv[g(y)w(y)]εy[uvg(y)w(y)y]φ. \int_u^v {[g(y)w(y)]^\varepsilon }\nabla y \ge {\left[ {\int_u^v g(y)w(y)\nabla y} \right]^\varphi }.

Proof

If we use Cauchy's Mean Value Theorem consecutively for δ ∈ (u,v) and θ ∈ (u,δ), then we obtain [uvg(y)w(y)y]φuv[g(y)]εy=φ[uδg(y)w(y)y]φ1w(y)g(δ)[w(y)g(δ)]ε={φ1/(φ1)uδw(y)g(y)y[w(y)g(δ)](ε1)/(φ1)}φ1={φ1/(φ1)w(θ)g(θ)ε1φ1[w(θ)g(θ)]εφφ1(wg)(θ)}φ1={(εφ)φ1/(φ1)/(φ1)[(wg)(εφ)/(φ1)(θ)]}φ1. \matrix{ {{{{{\left[ {\int_u^v g(y)w(y)\nabla y} \right]}^\varphi }} \over {\int_u^v {{[g(y)]}^\varepsilon }\nabla y}} = {{\varphi {{\left[ {\int_u^\delta g(y)w(y)\nabla y} \right]}^{\varphi - 1}}w(y)g(\delta )} \over {{{[w(y)g(\delta )]}^\varepsilon }}} = {{\left\{ {{{{\varphi ^{1/(\varphi - 1)}}\int_u^\delta w(y)g(y)\nabla y} \over {{{[w(y)g(\delta )]}^{(\varepsilon - 1)/(\varphi - 1)}}}}} \right\}}^{\varphi - 1}}} \cr { = {{\left\{ {{{{\varphi ^{1/(\varphi - 1)}}w(\theta )g(\theta )} \over {{{\varepsilon - 1} \over {\varphi - 1}}{{[w(\theta )g(\theta )]}^{{{\varepsilon - \varphi } \over {\varphi - 1}}}}(wg)'(\theta )}}} \right\}}^{\varphi - 1}} = {{\left\{ {{{(\varepsilon - \varphi ){\varphi ^{1/(\varphi - 1)}}/(\varphi - 1)} \over {[(wg{)^{(\varepsilon - \varphi )/(\varphi - 1)}}(\theta )]}}} \right\}}^{\varphi - 1}}.} \cr } thus, (3) inequality holds.

Theorem 3.3

Let w be a weight function, w(y),g(y) > 0, uvg(y)w(y)y< \int_u^v g(y)w(y)\nabla y < \infty for y ∈ (u,v],g,wC([u,v],R), ɛR. If ϕ = 1 and [w(y)g(y)]1−ϕ ≤ 1 fory ∈ (u,v), then (3) holds.

Proof

For ϕ = 1, inequality (3) reduced to uv[w(y)g(y)]εyuvw(y)g(y)y. \int_u^v {[w(y)g(y)]^\varepsilon }\nabla y \ge \int_u^v w(y)g(y)\nabla y.

If we use Cauchy's Mean Value Theorem, we obtain the following equation uv[w(y)g(y)]εyuvw(y)g(y)y=[w(δ)g(δ)]εw(δ)g(δ)=[w(δ)g(δ)]ε1. {{\int_u^v {{[w(y)g(y)]}^\varepsilon }\nabla y} \over {\int_u^v w(y)g(y)\nabla y}} = {{{{[w(\delta )g(\delta )]}^\varepsilon }} \over {w(\delta )g(\delta )}} = [w(\delta )g(\delta {)]^{\varepsilon - 1}}.

Theorem 3.4

Let w be a weight function, uvg(y)w(y)y< \int_u^v g(y)w(y)\nabla y < \infty for y ∈ (u,v], mN and 1 ≤ ϕm + 1, there exist (wg)m(y) derivative of the m-th order on [u,v] and (wg)m(y) is increasing, then g(m)(y) ≥ 0,g(i)(u) = 0 for 0 ≤ jm − 1. If w(y)g(y)[(yε)φ1φφ2]1/(εφ) w(y)g(y) \ge {\left[ {{{{{(y - \varepsilon )}^\varphi } - 1} \over {{\varphi ^{\varphi - 2}}}}} \right]^{1/(\varepsilon - \varphi )}} , then (3) holds.

Proof

If we use Cauchy's Mean Value Theorem together with the condition given in the theorem, we get the following. uv[w(y)g(y)]εy[uvw(y)g(y)y]φ=[w(c1)g(c1)]ε1φ[uc1w(y)g(y)y]φ1u<c1<v[(c1u)w(c1g(c1))]φ1/φφ2φ[uc1w(y)g(y)y]φ1=[(c1ε)w(c1)g(c1)φuc1w(y)g(y)y]φ1. \matrix{ {{{\int_u^v {{[w(y)g(y)]}^\varepsilon }\nabla y} \over {{{[\int_u^v w(y)g(y)\nabla y]}^\varphi }}} = {{{{[w({c_1})g({c_1})]}^{\varepsilon - 1}}} \over {\varphi {{[\int_u^{{c_1}} w(y)g(y)\nabla y]}^{\varphi - 1}}}}\quad \quad \quad \quad u < {c_1} < v} \cr { \ge {{{{[({c_1} - u)w({c_1}g({c_1}))]}^{\varphi - 1}}/{\varphi ^{\varphi - 2}}} \over {\varphi {{[\int_u^{{c_1}} w(y)g(y)\nabla y]}^{\varphi - 1}}}} = {{\left[ {{{({c_1} - \varepsilon )w({c_1})g({c_1})} \over {\varphi \int_u^{{c_1}} w(y)g(y)\nabla y}}} \right]}^{\varphi - 1}}.} \cr }

If we use Cauchy's Mean Value Theorem consecutively in (7), we obtain (c1ε)w(c1)g(c1)φuc1w(y)g(y)y=1+(c2ε)(wg)(c2)w(c2)g(c2)u<c2<c1...=m+(cm+1ε)(wg)(m)(cm+1)(wg)(m1)(cm+1)u<cm+1<cm. \matrix{ {{{({c_1} - \varepsilon )w({c_1})g({c_1})} \over {\varphi \int_u^{{c_1}} w(y)g(y)\nabla y}} = 1 + {{({c_2} - \varepsilon )(wg)'({c_2})} \over {w({c_2})g({c_2})}}\quad \quad \quad \quad u < {c_2} < {c_1}} \cr {...} \cr { = m + {{({c_{m + 1}} - \varepsilon )(wg{)^{(m)}}({c_{m + 1}})} \over {{{(wg)}^{(m - 1)}}({c_{m + 1}})}}\quad \quad \quad \quad \quad \quad u < {c_{m + 1}} < {c_m}.} \cr }

But (wg)(m−1)(k) = (wg)(m−1)(k)−(wg)(m−1)(u) = (ku)(wg)m(k1) for k1 ∈ (u,k). If (wg)m(k1) ≤ gm(k), then (wg)(m)(y) is increasing.

Hence (wg)(m)(k)(ku)(wg)(m1)(k)>0. {(wg)^{(m)}}(k)(k - u) \ge {(wg)^{(m - 1)}}(k) > 0.

Applying (9) to (8) yields (c1ε)g(c1)uc1g(y)ym+1. {{({c_1} - \varepsilon )g({c_1})} \over {\int_u^{{c_1}} g(y)\nabla y}} \ge m + 1.

Hence uv[g(y)]εy[uvg(y)y]φ(m+1φ)φ1 {{\int_u^v {{[g(y)]}^\varepsilon }\nabla y} \over {{{[\int_u^v g(y)\nabla y]}^\varphi }}} \ge {\left( {{{m + 1} \over \varphi }} \right)^{\varphi - 1}} for 1 ≤ ɛm + 1.

Theorem 3.5

Suppose that w be a weight function uvw(y)g(y)y< \int_u^v w(y)g(y)\nabla y < \infty for y ∈ (u,v), mN, 1 < ϕm + 1, there exist (wg)(m)(y) derivative of the m-th order on [u,v] and (wg)(m)(y) is increasing, then (wg)(m)(y) ≥ 0 and g(j)(u) = 0 for m − 1 ≥ j ≥ 0.

If w(y)g(y)[φ(yε)(φ1)(φ1)(φ2)]1/(εφ) w(y)g(y) \ge {\left[ {{{\varphi {{(y - \varepsilon )}^{(\varphi - 1)}}} \over {{{(\varphi - 1)}^{(\varphi - 2)}}}}} \right]^{1/(\varepsilon - \varphi )}} .

Proof

If w(y)g(y)[φ(yε)(φ1)(φ1)(φ2)]1/(εφ) w(y)g(y) \ge {\left[ {{{\varphi {{(y - \varepsilon )}^{(\varphi - 1)}}} \over {{{(\varphi - 1)}^{(\varphi - 2)}}}}} \right]^{1/(\varepsilon - \varphi )}} , (6) becomes uv[w(y)g(y)]εy[uvw(y)g(y)y]φ[(c1ε)w(c1)g(c1)(φ1)uc1w(y)g(y)y]φ1. {{\int_u^v {{[w(y)g(y)]}^\varepsilon }\nabla y} \over {{{[\int_u^v w(y)g(y)\nabla y]}^\varphi }}} \ge {\left[ {{{({c_1} - \varepsilon )w({c_1})g({c_1})} \over {(\varphi - 1)\int_u^{{c_1}} w(y)g(y)\nabla y}}} \right]^{\varphi - 1}}.

If all terms of (8) are positive, then (c1ε)w(c1)g(c1)uc1w(y)g(y)ym {{({c_1} - \varepsilon )w({c_1})g({c_1})} \over {\int_u^{{c_1}} w(y)g(y)\nabla y}} \ge m .

Now let's consider the ⋄a-integral in time scales.

Theorem 3.6

Let w be a weight function, h(y),w(y) > 0, uvw(y)h(y)y \int_u^v w(y)h(y)\nabla y for y ∈ (u,v), p > 1 or q < 0, while 1/p + 1/q = 1 and h,wCrd(T,R). If uvw(y)h(y)ay(vu)p1 \int_u^v w(y)h(y){\diamondsuit _a}y \ge {(v - u)^{p - 1}} for u,vT, then uv[w(y)h(y)]pay[uvw(y)h(y)ay]p1. \int_u^v {[w(y)h(y)]^p}{\diamondsuit _a}y \ge {\left[ {\int_u^v w(y)h(y){\diamondsuit _a}y} \right]^{p - 1}}.

Proof

See proof of Theorem 3.1. Moreover, when α = 0, (11) reduce to (1).

Theorem 3.7

Let g,wCrd(T,R),⋄a-differantiabla on (u,v), and let w be a weight function, uvw(y)h(y)ay \int_u^v w(y)h(y){\diamondsuit _a}y for y ∈ (u,v],w(y)g(y) > 0, and let ɛ,ϕ be positive real numbers such that 1 < ϕ < ɛ. If [(wg)(εφ)/(φ1)(y)](εφ)φ1/(φ1)ε1. {\left[ {{{(wg)}^{(\varepsilon - \varphi )/(\varphi - 1)}}(y)} \right]}^\prime \ge {{(\varepsilon - \varphi ){\varphi ^{1/(\varphi - 1)}}} \over {\varepsilon - 1}}. fory ∈ (u,v), then uv[w(y)g(y)]εay[uvw(y)g(y)ay]φ. \int_u^v {[w(y)g(y)]^\varepsilon }{\diamondsuit _a}y \ge {\left[ {\int_u^v w(y)g(y){\diamondsuit _a}y} \right]^\varphi }.

Proof

See proof of Theorem 3.2. Moreover, (13) inequality is an extension of (3) inequality. When α = 0, (13) reduce to (3).

Theorem 3.8

Let aR, w be a weight function, uvw(y)g(y)y< \int_u^v w(y)g(y){\diamondsuit _y} < \infty for y ∈ (u,v), g(y),w(y) > 0, g,wC([u,v],R) and [w(y),g(y)], ⋄a-differantiable on (u,v). If ϕ = 1 and [w(y)g(y)]1−ϕ ≤ 1 fory ∈ (u,v), then uv[w(y)g(y)]εay[uvw(y)g(y)ay]φ. \int_u^v {[w(y)g(y)]^\varepsilon }{\diamondsuit _a}y \ge {\left[ {\int_u^v w(y)g(y){\diamondsuit _a}y} \right]^\varphi }.

Proof

See proof of Theorem 3.3. Moreover, (14) inequality is an extension of (3) inequality. When α = 0, (14) reduce to (3).

Theorem 3.9

Suppose that w be a weight function, uvw(y)g(y)y< \int_u^v w(y)g(y){\diamondsuit _y} < \infty for y ∈ (u,v). mN,1 ≤ ϕm+1, there exist (wg)(m)(y) derivative of the m-th order on [u,v], (wg)(m)(y) is increasing and [w(y),g(y)],⋄a-differantiable in (u,v), then (wg)(m)(y) ≥ 0 and gj(u) = 0 for 0 ≤ jm − 1. If w(y)g(y)[(yε)φ1φφ2]1/(εφ), w(y)g(y) \ge {\left[ {{{{{(y - \varepsilon )}^{\varphi - 1}}} \over {{\varphi ^{\varphi - 2}}}}} \right]^{1/(\varepsilon - \varphi )}}, then uv[w(y)g(y)]εay[uvw(y)g(y)ay]φ. \int_u^v {[w(y)g(y)]^\varepsilon }{\diamondsuit _a}y \ge {\left[ {\int_u^v w(y)g(y){\diamondsuit _a}y} \right]^\varphi }. inequality holds.

Proof

See proof of Theorem 3.4. Moreover, (15) inequality is an extension of (3) inequality. When α = 0, (15) reduce to (3).

Theorem 3.10

Suppose that w be a weight function, uvw(y)g(y)y< \int_u^v w(y)g(y){\diamondsuit _y} < \infty for y ∈ (u,v). mN,1 ≤ ϕm + 1, there exist (wg)(m)(y) derivative of the m-th order on [u,v], (wg)(m)(y) is increasing and [w(y),g(y)],⋄a-differantiable in (u,v), then (wg)(m)(y) ≥ 0 and gj(u) = 0 for 0 ≤ jm − 1. If w(y)g(y)[φ(yε)φ1(φ1)φ2]1/(εφ), w(y)g(y) \ge {\left[ {{{\varphi {{(y - \varepsilon )}^{\varphi - 1}}} \over {{{(\varphi - 1)}^{\varphi - 2}}}}} \right]^{1/(\varepsilon - \varphi )}}, then uv[w(y)g(y)]εay[uvw(y)g(y)ay]φ. \int_u^v {[w(y)g(y)]^\varepsilon }{\diamondsuit _a}y \ge {\left[ {\int_u^v w(y)g(y){\diamondsuit _a}y} \right]^\varphi }. inequality holds.

Proof

See proof of Theorem 3.5. Moreover, (16) inequality is an extension of (3) inequality. When α = 0, (16) reduce to (3).

Conclusion

Integral inequalities and dynamic equations are the cornerstones of both time scales and harmonic analysis. Mathematicians proved many integral inequalities on time scales [4,5,6,7,8,9]. And they also showed generalized forms of these inequalities [10, 11, 13, 25]. Time scales theory has also been of interest in different sciences. For example, quantum mechanics, wave equations, physical problems, heat transfer, electrical engineering and economics [26,27,28,29,30]. In this article, we proved non-linear integral inequalities in time scales via the ∇-integral and the ⋄a-integral. We think that the multidimensional and multivariate cases of the inequalities proved in this article are also worth examining.

S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrmsmannigfaltingkeiten, Ph.D. Thesis, Univarsi. Würzburg, 1988. HilgerS. Ein Maßkettenkalkül mit Anwendung auf Zentrmsmannigfaltingkeiten Ph.D. Thesis, Univarsi. Würzburg 1988 Search in Google Scholar

R.P. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey. Math. Inequal. Appl., 2001, 4, 535–555. https://doi.org/10.7153/mia-04-48 AgarwalR.P. BohnerM. PetersonA. Inequalities on time scales: A survey Math. Inequal. Appl. 2001 4 535 555 https://doi.org/10.7153/mia-04-48 10.7153/mia-04-48 Search in Google Scholar

E. Akin-Bohner, M. Bohner, F. Akin, Pachpatte inequalities on time scales. Journal of Inequalities in Pure and Applied Mathematics. 2005, 6(1), 1–23 Akin-BohnerE. BohnerM. AkinF. Pachpatte inequalities on time scales Journal of Inequalities in Pure and Applied Mathematics 2005 6 1 1 23 Search in Google Scholar

W.N. Li, Nonlinear Integral Inequalities in Two Independent Variables on Time Scales. Adv Differ Equ. 2011, 283926. doi:10.1155/2011/283926 LiW.N. Nonlinear Integral Inequalities in Two Independent Variables on Time Scales Adv Differ Equ. 2011 283926 10.1155/2011/283926 Open DOISearch in Google Scholar

G.A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities. Mathematical and Computer Modelling. 2010, 52, 556–566. https://doi.org/10.1016/j.mcm.2010.03.055 AnastassiouG.A. Principles of delta fractional calculus on time scales and inequalities Mathematical and Computer Modelling 2010 52 556 566 https://doi.org/10.1016/j.mcm.2010.03.055 10.1016/j.mcm.2010.03.055 Search in Google Scholar

F.-H. Wong, C.-C. Yeh, S.-L. Yu, C.-H. Hong, Young's inequality and related results on time scales, Appl. Math. Lett. 2005, 18, 983–988. WongF.-H. YehC.-C. YuS.-L. HongC.-H. Young's inequality and related results on time scales Appl. Math. Lett. 2005 18 983 988 10.1016/j.aml.2004.06.028 Search in Google Scholar

F.-H. Wong, C.-C. Yeh, W.-C. Lian, An extension of Jensen's inequality on time scales, Adv. Dynam. Syst. Appl. 2006, 1 (1), 113–120 WongF.-H. YehC.-C. LianW.-C. An extension of Jensen's inequality on time scales Adv. Dynam. Syst. Appl. 2006 1 1 113 120 Search in Google Scholar

J. Kuang, Applied inequalities, Shandong Science Press, Jinan, 2003. KuangJ. Applied inequalities Shandong Science Press Jinan 2003 Search in Google Scholar

D. Uçar, V.F. Hatipoğlu, A. Akincali, Fractional Integral Inequalities On Time Scales. Open J. Math. Sci., 2018, Vol. 2, No. 1, pp. 361–370 (2018). UçarD. HatipoğluV.F. AkincaliA. Fractional Integral Inequalities On Time Scales Open J. Math. Sci. 2018 2 1 361 370 2018 10.30538/oms2018.0041 Search in Google Scholar

U.M. Özkan, M.Z. Sarikaya, H. Yildirim, Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 2008, 21, 993–1000. ÖzkanU.M. SarikayaM.Z. YildirimH. Extensions of certain integral inequalities on time scales Appl. Math. Lett. 2008 21 993 1000 10.1016/j.aml.2007.06.008 Search in Google Scholar

J.-F. Tian, M.-H. Ha, Extensions of Hölder-type inequalities on time scales and their applications, J. Nonlinear Sci. Appl., 2017,10, 937–953. TianJ.-F. HaM.-H. Extensions of Hölder-type inequalities on time scales and their applications J. Nonlinear Sci. Appl. 2017 10 937 953 10.22436/jnsa.010.03.07 Search in Google Scholar

V. Kac, P. Cheung, Quantum Calculus. Universitext Springer, New York 2002. KacV. CheungP. Quantum Calculus Universitext Springer New York 2002 10.1007/978-1-4613-0071-7 Search in Google Scholar

W.-G. Yang, A functional generalization of diamond-a integral Hölder's inequality on time scales, Appl. Math. Lett., 2010, 23, 1208–1212. YangW.-G. A functional generalization of diamond-a integral Hölder's inequality on time scales Appl. Math. Lett. 2010 23 1208 1212 10.1016/j.aml.2010.05.013 Search in Google Scholar

M. Bohner, A. Peterson, Dynamic equations on time scales, An introduction with applications. Birkhauser, Boston, 2001. https://doi.org/10.1007/978-1-4612-0201-1 BohnerM. PetersonA. Dynamic equations on time scales, An introduction with applications Birkhauser Boston 2001 https://doi.org/10.1007/978-1-4612-0201-1 10.1007/978-1-4612-0201-1 Search in Google Scholar

Q. Sheng, M. Fadag, J. Henderson, J.M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl., 2006, 7, 395–413. ShengQ. FadagM. HendersonJ. DavisJ.M. An exploration of combined dynamic derivatives on time scales and their applications Nonlinear Anal. Real World Appl. 2006 7 395 413 10.1016/j.nonrwa.2005.03.008 Search in Google Scholar

F. Qi, Several integral inequalities. RGMIA Res. Rep. Coll. 1999, 2(7), Art. 9, 1039–1042. http://rgmia.org/v2n7.php QiF. Several integral inequalities RGMIA Res. Rep. Coll. 1999 2 7 Art. 9, 1039 1042 http://rgmia.org/v2n7.php Search in Google Scholar

F. Qi, Several integral inequalities. J. Inequal. Pure Appl. Math. 2000, 1(2), Art. 19. http://www.emis.de/journals/JIPAM/article113.html QiF. Several integral inequalities J. Inequal. Pure Appl. Math. 2000 1 2 Art. 19. http://www.emis.de/journals/JIPAM/article113.html Search in Google Scholar

S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 1990 18, 18–56. HilgerS. Analysis on measure chains-a unified approach to continuous and discrete calculus Results Math. 1990 18 18 56 10.1007/BF03323153 Search in Google Scholar

R.P. Agarwal, D. O’Regan, S.H. Saker, Dynamic Inequalities on Time Scales, Springer, Heidelberg/New York/Drodrechet/London 2014. AgarwalR.P. O’ReganD. SakerS.H. Dynamic Inequalities on Time Scales Springer Heidelberg/New York/Drodrechet/London 2014 10.1007/978-3-319-11002-8 Search in Google Scholar

W.N. Li, Nonlinear Integral Inequalities in Two Independent Variables on Time Scales. Adv Differ Equ. 2011, 283926. doi:10.1155/2011/283926 LiW.N. Nonlinear Integral Inequalities in Two Independent Variables on Time Scales Adv Differ Equ. 2011 283926 10.1155/2011/283926 Open DOISearch in Google Scholar

M. Bohner, R.P. Agarwal, Basic calculus on time scales and some of its applications. Resultate der Mathematik, 1999, 35, 3–22. https://doi.org/10.1007/BF03322019 BohnerM. AgarwalR.P. Basic calculus on time scales and some of its applications Resultate der Mathematik 1999 35 3 22 https://doi.org/10.1007/BF03322019 10.1007/BF03322019 Search in Google Scholar

M. Bohner, G.S. Guseinov, Multiple Lebesgue integration on time scales. Adv. Differ. Equ.2006, 026391. doi:10.1155/ADE/2006/26391. BohnerM. GuseinovG.S. Multiple Lebesgue integration on time scales Adv. Differ. Equ. 2006 026391 10.1155/ADE/2006/26391 Open DOISearch in Google Scholar

G. Chen, C. Wei, A functional generalization of diamond-a integral Dresher's inequality on time scales. Adv.Differ. Equ. 2014, 324. doi: 10.1186/1687-1847-2014-324. ChenG. WeiC. A functional generalization of diamond-a integral Dresher's inequality on time scales Adv.Differ. Equ. 2014 324 10.1186/1687-1847-2014-324 Open DOISearch in Google Scholar

L. Yin, F. Qi, Some Integral Inequalities on Time Scales, Results. Math. 2013, 64,371–381. DOI 10.1007/s00025-013-0320-z.. YinL. QiF. Some Integral Inequalities on Time Scales Results. Math. 2013 64 371 381 10.1007/s00025-013-0320-z Open DOISearch in Google Scholar

F. Qi, A.-J. Li, W.-Z. Zhao, D.-W. Niu, J. -Cao, Extensions of several integral inequalities. J. Inequal. Pure Appl. Math.2006 7(3), Art. 107. http://www.emis.de/journals/JIPAM/article706.html QiF. LiA.-J. ZhaoW.-Z. NiuD.-W. CaoJ. Extensions of several integral inequalities J. Inequal. Pure Appl. Math. 2006 7 3 Art. 107. http://www.emis.de/journals/JIPAM/article706.html Search in Google Scholar

V. Spedding, Taming nature's numbers, New Scientist, July 19 (2003), 28–31 SpeddingV. Taming nature's numbers New Scientist July 19 2003 28 31 Search in Google Scholar

C. C. Tisdell, A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling. Nonlinear Anal.68, 3504–3524 (2008) TisdellC. C. ZaidiA. Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling Nonlinear Anal. 68 3504 3524 2008 10.1016/j.na.2007.03.043 Search in Google Scholar

M. Bohner, J. Heim, A. Liu, Qualitative analysis of Solow model on time scales. J. Concrete Appl. Math. 13, 183–197 (2015) BohnerM. HeimJ. LiuA. Qualitative analysis of Solow model on time scales J. Concrete Appl. Math. 13 183 197 2015 Search in Google Scholar

D. Brigo, F. Mercurio, Discrete time vs continuous time stock-price dynamics and implications for option pricing. Finance Stochast. 4, 147–159 (2000) BrigoD. MercurioF. Discrete time vs continuous time stock-price dynamics and implications for option pricing Finance Stochast. 4 147 159 2000 10.2139/ssrn.292059 Search in Google Scholar

A. R. Seadawy, M. Iqbal and D. Lu, Nonlinear wave solutions of the Kudryashov–Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity, Journal of Taibah University for Science, 2019, 13:1, 1060–1072, DOI: 10.1080/16583655.2019.1680170. SeadawyA. R. IqbalM. LuD. Nonlinear wave solutions of the Kudryashov–Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity Journal of Taibah University for Science 2019 13 1 1060 1072 10.1080/16583655.2019.1680170 Open DOISearch in Google Scholar

Recommended articles from Trend MD