1. bookVolume 6 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
First Published
01 Jan 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

New Travelling Wave Solution-Based New Riccati Equation for Solving KdV and Modified KdV Equations

Published Online: 10 Oct 2020
Page range: 447 - 458
Received: 09 Mar 2020
Accepted: 23 Sep 2020
Journal Details
License
Format
Journal
First Published
01 Jan 2016
Publication timeframe
2 times per year
Languages
English
Abstract

A large family of explicit exact solutions to both Korteweg- de Vries and modified Korteweg- de Vries equations are determined by the implementation of the new extended direct algebraic method. The procedure starts by reducing both equations to related ODEs by compatible travelling wave transforms. The balance between the highest degree nonlinear and highest order derivative terms gives the degree of the finite series. Substitution of the assumed solution and some algebra results in a system of equations are found. The relation between the parameters is determined by solving this system. The solutions of travelling wave forms determined by the application of the approach are represented in explicit functions of some generalized trigonometric and hyperbolic functions and exponential function. Some more solutions with different characteristics are also found.

Keywords

MSC 2010

Introduction

The Korteweg-de Vries (KdV) family of nonlinear PDEs attracts many researchers due to having soliton-type solutions that preserve their shapes and heights after interacting with each other. In the related literature, it is accepted that the story of Korteweg-de Vries equation (KdVE) represented by the following equation ut+puux+quxxx=0, {u_t} + pu{u_x} + q{u_{xxx}} = 0, where p and q are nonzero constant coefficients and superscripts denoting partial derivatives of u(x,t), starts in the late 1800s in [1]. The KdVE is an integrable equation having pulse-type travelling wave solutions with positive or negative amplitudes. The KdVE has multiple soliton-type solutions having particle-like behaviours that maintain their velocity, shape, and amplitudes after collision [2, 3]. Another significant property of the KdVE is to have infinitely many conservation laws describing different physical meanings covering energy, momentum, and mass [4]. Besides, it is also useful to model internal waves in waters with multiple density layers, crystal lattice acoustic waves and ion-acoustic wave models in plasma. Due to the above-mentioned properties of the KdV model, researchers search for different ways to provide accurate solutions to this model.

When the quadratic nonlinear term is replaced by a cubic one, the equation is named as the modified Korteweg-de Vries equation (mKdVE) ut+pu2ux+quxxx=0, {u_t} + p{u^2}{u_x} + q{u_{xxx}} = 0, where and q are nonzero real constants and subscripts x and t denote the partial derivatives of u(x,t). A plenty of efficient methods have been implemented to derive solutions in various forms to the KdVE- and mKdv-type equations. For example, Ankiewicz et al. in [5] provided three lowest order exact rational solutions to the Kdv-type equations. Jia et al. [6] constructed a Darboux transformation for the nonlocal mKdV-type equations finding exact solutions in the form of soliton, kink and antikink solutions. Inverse scattering transformation is proposed for finding soliton solutions to the modified KdV in [7]. The consistent Riccati expansion method has been utilized for investigating an interacting solution to the mKdV models in [8]. Some soliton-like and periodic solutions were constructed by the assistance of hyperbolic tangent and cotangent functions [9]. Rational function solutions having some trigonometric or/and hyperbolic finite series in both numerator and denominator were set by classical (G’/G)-expansion approach [10]. The extended homoclinic test technique was applied to the KdVE to find solitary wave solutions in periodic function forms [11]. Composite function solutions were suggested under Wronskain expansion in [12]. Periodic wave and hyperbolic function-type solutions have been derived by simple ansatz techniques in trigonometric function forms [13]. Exp function approach is proposed periodic solutions of rational function forms of trigonometric and exponential functions [14].

Today, there are many different techniques used to derive exact solutions to nonlinear PDEs of both integer and fractional order due to their importance in modelling physical phenomenon. Time fractional nonlinear dispersive PDE is introduced and examined in [15], and a solitary wave solution to the problem is obtained. Numerical treatment of a fractional model of the Newell weighted Segel equation of arbitrary order is investigated using a residual power series method that provides excellent results for the problem [26]. Also, a biological model that describes the immune system and tumour cells in the immunogenic tumour model is presented and discussed in [17] with a new definition of the Atangana fractional definition and studied using the Adam Bashforths Moulton method. Some new fractional definitions are introduced in [18], and those definitions are then used to simulate a new Yang-Abdel-Aty-Cattani fractional diffusion equation. Also, time-fractional wave equations are presented in the sense of Yang-Abdel-Aty-Cattani fractional definition and then solved with the aid of the homotopy perturbation transform method [19], and the existence and uniqueness of the fractional Cauchy reaction-diffusion equations are also solved in [20] with the same technique. Several other methods including simple trigonometric ansatz methods [21, 22], modified auxiliary equation technique [23, 24], unified method [25,27], Jacobi elliptic function expansion method [28,29], Sine-Gordon expansion method [30,31], Exp (−ϕ(ξ))-Expansion method [32, 33], and modified simple equation method [34, 35] are some other important and efficient methods to set exact solutions to nonlinear PDEs. For more details regarding models of nonlinear PDE and their solutions, one may refer to [36,37,38,39] and references therein. These methods

In this article, we are concerned with implementing a new extended direct algebraic approach to derive a large family of exact solutions to both the KdV equation represented in Eq. (1) and the mKdV in Eq. (2).

This article is organised as follows: Section 2 gives brief properties of the new extended direct algebraic approach and summarizes the steps of the implementation of the approach. Section 3 and Section 4 are reserved to solve the KdV and the mKdV by the proposed approach given in Section 2. Section 5 provides a conclusion to the study.

Fundamentals of the New Extended Direct Algebraic Method

In this section, we introduce the main steps for developing the new extended direct algebraic method [35,40]. The main steps for the method are as follows:

Step 1. Consider a nonlinear partial differential equation of the form F(u,ut,ux,utt,uxx,)=0 F\left( {u,{u_t},{u_x},{u_{tt}},{u_{xx}}, \ldots } \right) = 0 which can be converted to an ODE as the following form G(u,u,u,)=0, G\left( {u,u',u'', \ldots } \right) = 0, using the wave transformation u(x,t)=u(ξ),ξ=x-μt. u(x,t) = u(\xi ),\quad \quad \xi = x - \mu t.

Step 2. Suppose that the solution of Eq. (4) can be presented as follows u(ξ)=j=0mbjQj(ξ),bm0, u(\xi ) = \mathop \sum \limits_{j = 0}^m {b_j}{Q^j}(\xi ),\quad {b_m} \ne 0, where bk (0 ≤ km) are constant coefficients to be determined later and Q(ξ) satisfies the following ODE Q(ξ)=Ln(A)(α+βQ(ξ)+σQ2(ξ),A0,1. Q'(\xi) = Ln (A) (\alpha + \beta Q (\xi) + \sigma Q^2 (\xi), \quad A \neq 0,1.

The above ODE has a wide range of exact solutions. Here just some of them are listed.

Family 1: Ifβ2 − 4ασ < 0 and σ ≠ 0, then Q1(ξ)=-β2σ+-(β2-4ασ)2σtanA(-(β2-4ασ)2(ξ+ξ0)), {Q_1}(\xi ) = - \frac{\beta }{{2\sigma }} + \frac{{\sqrt { - \left( {{\beta ^2}- 4\alpha \sigma } \right)} }}{{2\sigma }}{\tan _A}\left( {\frac{{\sqrt { -\left( {{\beta ^2} - 4\alpha \sigma } \right)} }}{2}(\xi + {\xi _0})} \right), Q2(ξ)=-β2σ--(β2-4ασ)2σcotA(-(β2-4ασ)2(ξ+ξ0)), {Q_2}(\xi ) = - \frac{\beta }{{2\sigma }} - \frac{{\sqrt { - \left( {{\beta ^2}- 4\alpha \sigma } \right)} }}{{2\sigma }}{\cot _A}\left( {\frac{{\sqrt { -\left( {{\beta ^2} - 4\alpha \sigma } \right)} }}{2}(\xi + {\xi _0})} \right), Q3(ξ)=-β2σ+-(β2-4ασ)2σ(tanA(-(β2-4ασ)(ξ+ξ0))±pqsecA(-(β2-4ασ)(ξ+ξ0))), {Q_3}(\xi ) = - \frac{\beta }{{2\sigma }} + \frac{{\sqrt { - \left( {{\beta ^2}- 4\alpha \sigma } \right)} }}{{2\sigma }} \left( {{{\tan }_A}\left( {\sqrt { -\left( {{\beta ^2} - 4\alpha \sigma } \right)} (\xi + {\xi _0})} \right) \pm\sqrt {pq} {{\sec }_A}\left( {\sqrt { - \left( {{\beta ^2} - 4\alpha \sigma }\right)} (\xi + {\xi _0})} \right)} \right), Q4(ξ)=-β2σ--(β2-4ασ)2σ(cotA(-(β2-4ασ)(ξ+ξ0))±pqcscA(-(β2-4ασ)(ξ+ξ0))), {Q_4}(\xi ) = - \frac{\beta }{{2\sigma }} - \frac{{\sqrt { - \left( {{\beta ^2}- 4\alpha \sigma } \right)} }}{{2\sigma }}\left( {{{\cot }_A}\left( {\sqrt { -\left( {{\beta ^2} - 4\alpha \sigma } \right)} (\xi + {\xi _0})} \right) \pm\sqrt {pq} {{\csc }_A}\left( {\sqrt { - \left( {{\beta ^2} - 4\alpha \sigma }\right)} (\xi + {\xi _0})} \right)} \right), Q5(ξ)=-β2σ+-(β2-4ασ)4σ(tanA(-(β2-4ασ)4(ξ+ξ0))-cotA(-(β2-4ασ)4(ξ+ξ0))). {Q_5}(\xi ) = - \frac{\beta }{{2\sigma }} + \frac{{\sqrt { - \left( {{\beta ^2}- 4\alpha \sigma } \right)} }}{{4\sigma }} \left( {{{\tan }_A}\left({\frac{{\sqrt { - \left( {{\beta ^2} - 4\alpha \sigma } \right)} }}{4}(\xi +{\xi _0})} \right) - {{\cot }_A}\left( {\frac{{\sqrt { - \left( {{\beta ^2} -4\alpha \sigma } \right)} }}{4}(\xi + {\xi _0})} \right)} \right).

Family 2: Ifβ2 − 4ασ > 0 and σ ≠ 0, then Q6(ξ)=-β2σ-β2-4ασ2σtanhA(β2-4ασ2(ξ+ξ0)), {Q_6}(\xi ) = - \frac{\beta }{{2\sigma }} - \frac{{\sqrt {{\beta ^2} - 4\alpha\sigma } }}{{2\sigma }}{\tanh _A}\left( {\frac{{\sqrt {{\beta ^2} - 4\alpha\sigma } }}{2}(\xi + {\xi _0})} \right), Q7(ξ)=-β2σ-β2-4ασ2σcothA(β2-4ασ2(ξ+ξ0)), {Q_7}(\xi ) = - \frac{\beta }{{2\sigma }} - \frac{{\sqrt {{\beta ^2} - 4\alpha\sigma } }}{{2\sigma }}{\coth _A}\left( {\frac{{\sqrt {{\beta ^2} - 4\alpha\sigma } }}{2}(\xi + {\xi _0})} \right), Q8(ξ)=-β2σ-β2-4ασ2σ(tanhA(β2-4ασ(ξ+ξ0))±ipqsechA(β2-4ασ(ξ+ξ0))), {Q_8}(\xi ) = - \frac{\beta }{{2\sigma }} - \frac{{\sqrt {{\beta ^2} - 4\alpha\sigma } }}{{2\sigma }}\left( {{{\tanh }_A}\left( {\sqrt{{\beta ^2} - 4\alpha \sigma } (\xi + {\xi _0})} \right) \pm i\sqrt {pq}{{{\mathop{\rm sech}\nolimits} }_A}\left( {\sqrt {{\beta ^2} - 4\alpha \sigma }(\xi + {\xi _0})} \right)} \right), Q9(ξ)=-β2σ-β2-4ασ2σ(cothA(β2-4ασ(ξ+ξ0))±pqcschA(β2-4ασ(ξ+ξ0))), {Q_9}(\xi ) = - \frac{\beta }{{2\sigma }} - \frac{{\sqrt {{\beta ^2} - 4\alpha\sigma } }}{{2\sigma }} \left( {{{\coth }_A}\left( {\sqrt{{\beta ^2} - 4\alpha \sigma } (\xi + {\xi _0})} \right) \pm \sqrt {pq}{{{\mathop{\rm csch}\nolimits} }_A}\left( {\sqrt {{\beta ^2} - 4\alpha \sigma }(\xi + {\xi _0})} \right)} \right), Q10(ξ)=-β2σ-β2-4ασ4σ(tanhA(β2-4ασ4(ξ+ξ0))+cothA(β2-4ασ4(ξ+ξ0))). {Q_{10}}(\xi ) = - \frac{\beta }{{2\sigma }} - \frac{{\sqrt {{\beta ^2} -4\alpha \sigma } }}{{4\sigma }} \left( {{{\tanh }_A}\left({\frac{{\sqrt {{\beta ^2} - 4\alpha \sigma } }}{4}(\xi + {\xi _0})} \right) +{{\coth }_A}\left( {\frac{{\sqrt {{\beta ^2} - 4\alpha \sigma } }}{4}(\xi + {\xi_0})} \right)} \right).

Family 3: If β = λ, α = (m ≠ 0) and σ = 0, then Q11(ξ)=Aλ(ξ+ξ0)-m. {Q_{11}}(\xi ) = {A^{\lambda (\xi + {\xi _0})}} - m.

Family 4: If β = σ = 0, then Q12(ξ)=α(ξ+ξ0)LnA. Q_{12}(\xi) = \alpha (\xi + \xi_0)Ln A.

Family 5: If β = α = 0, then Q13(ξ)=-1σ(ξ+ξ0)LnA. Q_{13} (\xi) = \frac{-1}{ \sigma (\xi + \xi_0) Ln A}.

Family 6: If α = 0 and β ≠ 0, then Q14(ξ)=-pβσ(coshA(β(ξ+ξ0))-sinhA(β(ξ+ξ0))+p), Q_{14} (\xi) = -\frac{p \beta}{ \sigma(\cosh_A (\beta(\xi + \xi_0))- \sinh_A(\beta(\xi +\xi_0))+p)}, Q15(ξ)=-β(sinhA(β(ξ+ξ0))+coshA(β(ξ+ξ0)))σ(sinhA(β(ξ+ξ0))+coshA(β(ξ+ξ0))+q). {Q_{15}}(\xi ) = - \frac{{\beta \left( {{{\sinh }_A}(\beta (\xi + {\xi _0})) +{{\cosh }_A}(\beta (\xi + {\xi _0}))} \right)}}{{\sigma \left( {{{\sinh}_A}(\beta (\xi + {\xi _0})) + {{\cosh }_A}(\beta (\xi + {\xi _0})) + q}\right)}}.

Family 7: If β = λ, σ = (m ≠ 0) and α = 0,, then Q16(ξ)=pAλ(ξ+ξ0)p-mqAλ(ξ+ξ0), {Q_{16}}(\xi ) = \frac{{p{A^{\lambda (\xi + {\xi _0})}}}}{{p - mq{A^{\lambda(\xi + {\xi _0})}}}}, where ξ0 is an arbitrary constant.

Remark 1. Where generalized triangular and hyperbolic functions are defined as sinA(ξ)=pAiξ-qA-iξ2i,cosA(ξ)=pAiξ+qA-iξ2, {\sin _A}(\xi ) = \frac{{p{A^{i\xi }} - q{A^{ - i\xi }}}}{{2i}}, \quad {\cos _A}(\xi ) = \frac{{p{A^{i\xi }} + q{A^{ - i\xi }}}}{2}, tanA(ξ)=-ipAiξ-qA-iξpAiξ+qA-iξ,cotA(ξ)=ipAiξ+qA-iξpAiξ-qA-iξ, {\tan _A}(\xi ) = - i\frac{{p{A^{i\xi }} - q{A^{ - i\xi }}}}{{p{A^{i\xi }} +q{A^{ - i\xi }}}}, \quad {\cot _A}(\xi ) = i\frac{{p{A^{i\xi }} + q{A^{ - i\xi }}}}{{p{A^{i\xi }} - q{A^{- i\xi }}}}, secA(ξ)=2pAiξ+qA-iξ,quadcscA(ξ)=2ipAiξ-qA-iξ, {\sec _A}(\xi ) = \frac{2}{{p{A^{i\xi }} + q{A^{ - i\xi }}}},\ quad{\csc _A}(\xi ) = \frac{{2i}}{{p{A^{i\xi }} - q{A^{ - i\xi }}}}, sinhA(ξ)=pAξ-qA-ξ2,coshA(ξ)=pAξ+qA-ξ2, {\sinh _A}(\xi ) = \frac{{p{A^\xi } - q{A^{ - \xi }}}}{2},\quad {\cosh _A}(\xi ) = \frac{{p{A^\xi } + q{A^{ - \xi }}}}{2}, tanhA(ξ)=pAξ-qA-ξpAξ+qA-ξ,cschA(ξ)=2pAξ-qA-ξ, {\tanh _A}(\xi ) = \frac{{p{A^\xi } - q{A^{ - \xi }}}}{{p{A^\xi } + q{A^{ - \xi}}}},\quad {{\mathop{\rm csch}\nolimits} _A}(\xi ) = \frac{2}{{p{A^\xi } - q{A^{ - \xi}}}}, sechA(ξ)=2pAξ+qA-ξ,quadcschA(ξ)=2pAξ-qA-ξ, {\mathrm{sech} _A}(\xi ) = \frac{2}{{p{A^{\xi }} + q{A^{ - \xi }}}},\ quad{\mathrm{csch} _A}(\xi ) = \frac{{2}}{{p{A^{\xi }} - q{A^{ - \xi }}}}, where ξ is an independent variable, p and q are arbitrary constants greater than zero and called deformation parameters.

Step 3. Determine the positive integer m in Eq. (5). It can be done by balancing the highest-order derivative term and the highest-order nonlinear term in (4). If the degree of u(ξ) is D[u(ξ)] = n, then the degree of the other expressions will be given by D[dρu(ξ)dξρ]=n+ρ,andD[uρ(dνu(ξ)dξν)s]=nρ+s(n+ν). D\left[ {\frac{{{d^\rho }u(\xi )}}{{d{\xi ^\rho }}}} \right] = n + \rho ,\; \mathrm{and}\;D\left[ u^\rho \left( {\frac{{{d^\nu }u(\xi )}}{{d{\xi ^\nu }}}}\right)^s \right] = n\rho + s(n+\nu). Therefore, we can find the value of in Eq. (7), using Eq. (5).

Step 4. Substitute Eq. (5) along with its required derivatives into Eq. (4) and compare the coefficients of powers of f (ξ) in resultant equation for obtaining the set of algebraic equations.

Step 5. Solve the set of algebraic equations using the Maple package and put the results generated in Eq. (5) to extract the exact solutions of Eq. (3).

Next, we use the above-mentioned steps for solving the KdV problem represented in Eq. (1).

Solutions to the KdV Equation

First, consider the wave transformation in the following form u(x,t)=u(ξ),ξ=x-μt, u(x,t) = u(\xi), \quad \xi = x - \mu t, then by using the transform in Eq. (8) to the KdV problem, Eq. (1) is reduced as follows: -μu+puu+qu=0. -\mu u' + p uu' + qu''' =0. Now, by balancing the highest-order derivative term and the highest-order nonlinear term in Eq. (9), we find that m = 2. So, Eq. (9) will have a formal solution of the form u(ξ)=b0+b1Q(ξ)+b2Q2(ξ), u(\xi ) = {b_0} + {b_1}\,Q(\xi ) + {b_2}{Q^2}(\xi ), Next, by substituting Eq. (10) into Eq. (9) and collecting all the terms with the same order of Q(ξ) together, the left-hand side of Eq. (9) is then converted into polynomial in Q(ξ). Setting each coefficient of each polynomial to zero, we derive a set of algebraic equations for b0,b1,b2 and μ for the coefficient of Qi(ξ) in the following form Q0(ξ):αLnA(pb0b1-μb1+q(Ln2A)β2b1+6q(Ln2A)αβb2+2qaαb1σ(Ln2A))=0, Q^0(\xi) :\;\; \alpha Ln A (pb_0 b_1 - \mu b_1 + q (Ln^2 A) \beta^2 b_1 +6q (Ln^2 A)\alpha \beta b_2 + 2 q a \alpha b_1 \sigma (Ln^2 A)) = 0, Q2(ξ):LnA(8qαβb1σ(Ln2A)-2μb2α+pb12α+pb0b1β+2pb0b2α+qβ3b1(Ln2A)+14qαβ2b2(Ln2A)+16qσb2α2(Ln2A)-μb1β)=0, \begin{align*}Q^2(\xi): \;\; & Ln A (8q \alpha \beta b_1 \sigma (Ln^2 A) - 2 \mu b_2 \alpha + p b_1^2 \alpha + pb_0 b_1 \beta + 2 p b_0 b_2 \alpha + q \beta^3 b_1 (Ln^2 A) \\&+ 14 q \alpha \beta^2 b_2 (Ln^2 A) + 16 q \sigma b_2 \alpha^2 (Ln^2 A) - \mu b_1 \beta) =0, \end{align*} Q2(ξ):LnA(-μb1σ-2μb2β+pb12β+pb0b1σ+2pb0b2β+3pb1b2α+8qβ3b2(Ln2A)+8qασ2b1(Ln2A)+7qβ2b1σ(Ln2A)+52qαβb2σ(Ln2A))=0, \begin{align*}Q^2 (\xi): \;\; & Ln A (-\mu b_1 \sigma - 2 \mu b_2 \beta + p b_1^2 \beta + pb_0 b_1 \sigma + 2 p b_0 b_2 \beta + 3 p b_1 b_2 \alpha \\&+ 8 q \beta^3 b_2 (Ln^2 A) +8q \alpha \sigma^2 b_1 (Ln^2 A) + 7 q \beta^2 b_1 \sigma (Ln^2 A) + 52 q \alpha \beta b_2 \sigma (Ln^2 A)) = 0,\end{align*} Q3(ξ):LnA(-2μb2σ+pb12σ+2pb22α+38qβ2b2σ(Ln2A)+12qβσ2b1(Ln2A)+40qασ2b2(Ln2A)+2pb0b2σ+3pb1b2β)=0, \begin{align*}Q^3(\xi):\;\; & Ln A ( -2 \mu b_2 \sigma + p b_1^2 \sigma + 2 p b_2^2 \alpha + 38q \beta^2 b_2 \sigma (Ln^2 A) + 12 q \beta \sigma^2 b_1 (Ln^2 A) + \\& 40 q \alpha \sigma^2 b_2 (Ln^2 A) + 2 p b_0 b_2 \sigma + 3 p b_1 b_2 \beta) = 0,\end{align*} Q4(ξ):LnA(54qβσ2b2(Ln2A)+3pb1b2σ+6qσ3b1(Ln2A)+2pb22β)=0, \begin{align*}Q^4(\xi):\;\;& Ln A (54 q \beta \sigma^2 b_2 (Ln^2 A) + 3 p b_1 b_2 \sigma + 6 q \sigma^3 b_1 (Ln^2 A) + 2 p b_2^2 \beta) = 0,\end{align*} Q5(ξ):LmA(24qσ3b2(Ln2A)+2pb22σ)=0. \begin{align*}Q^5(\xi):\;\;& Lm A (24 q \sigma^3 b_2 (Ln^2 A) + 2 p b_2^2 \sigma) = 0.\end{align*}

Solving the above system of equations for b0,b1,b2 and μ, we obtain the following values b0=b0,b1=-12qβσ(Ln2A)p,b2=-12qσ2(Ln2A)p,μ=q(Ln2A)(8ασ+β2+pb0. {b_0} = {b_0},\; b_1 = - \frac{12 q \beta \sigma (Ln^2 A)}{p},\; b_2 = - \frac{12 q \sigma^2 (Ln^2 A)}{p}, \; \mu = q (Ln^2 A )(8 \alpha \sigma + \beta^2 + p b_0. The solutions family of Eq. (1) that corresponds to Eq. (8) and Eq. (11) is as follows:

Family 1: If β2 − 4ασ < 0 and σ ≠ 0, then u1(x,y)=b0+3qLn2Ap(β2+Λtan2A(-Λ2(ξ+ξ0))), u_1 (x,y)= b_0 + \frac{3 q Ln^2 A}{p } \left( \beta^2 +\Lambda \tan_A^2 \left(\frac{\sqrt{-\Lambda}}{2} (\xi + \xi_0) \right) \right), u2(x,y)=b0+3qLn2Ap(β2+Λcot2A(-Λ2(ξ+ξ0))), u_2 (x,y)= b_0 + \frac{3 q Ln^2 A}{p } \left( \beta^2 +\Lambda \cot_A^2 \left(\frac{\sqrt{-\Lambda}}{2} (\xi + \xi_0) \right) \right), u3±(x,t)=b0-12qσ(Ln2A)p[-β2σ+-Λ2σ(tanA(-Λ(ξ+xi0))±pqsecA(-Λ(ξ+ξ0))+σ(-β2σ+-Λ2σ(tanA(-Λ(ξ+ξ0))±pqsecA(-Λ(ξ+ξ0)))))2], \begin{align}u_{3}^{\pm} (x,t)& = b_0 - \frac{12 q \sigma (Ln^2 A)}{p} \left[ - \frac{\beta }{2\sigma} + \frac{\sqrt{-\Lambda}}{2 \sigma} \left(\tan_A (\sqrt{-\Lambda}(\xi + xi_0)) \pm\sqrt{pq} \sec_A (\sqrt{-\Lambda} (\xi + \xi_0))\right.\right.\nonumber\\&\left. \left. +\sigma \left( - \frac{\beta}{2 \sigma} + \frac{\sqrt{-\Lambda}}{2\sigma} (\tan_A (\sqrt{-\Lambda} (\xi + \xi_0)) \pm \sqrt{pq} \sec_A (\sqrt{-\Lambda} (\xi+\xi_0)))\right)\right)^2\right],\end{align} u4±(x,t)=b0-12qσ(Ln2A)p[-β2σ+-Λ2σ(cotA(-Λ(ξ+xi0))±pqcscA(-Λ(ξ+ξ0))+σ(-β2σ+-Λ2σ(cotA(-Λ(ξ+ξ0))±pqcscA(-Λ(ξ+ξ0)))))2], \begin{align} u_{4}^{\pm} (x,t)& = b_0 - \frac{12 q \sigma (Ln^2 A)}{p} \left[ - \frac{\beta }{2\sigma} + \frac{\sqrt{-\Lambda}}{2 \sigma} \left(\cot_A (\sqrt{-\Lambda}(\xi + xi_0)) \pm\sqrt{pq} \csc_A (\sqrt{-\Lambda} (\xi + \xi_0))\right.\right.\nonumber\\ &\left. \left. +\sigma \left( - \frac{\beta}{2 \sigma} + \frac{\sqrt{-\Lambda}}{2\sigma} (\cot_A (\sqrt{-\Lambda} (\xi + \xi_0)) \pm \sqrt{pq} \csc_A (\sqrt{-\Lambda} (\xi+\xi_0)))\right)\right)^2 \right], \end{align} u5(x,t)=b012qσ(Ln2A)p[β2σ+Λ4σ(tanA(Λ4(ξ+ξ0))cotA(Λ4(ξ+ξ0)))σ(β2σ+Λ4σ(tanA(Λ4(ξ+ξ0))cotA(Λ4(ξ+ξ0))))2] \begin{align}u_5(x,t)&= b_0 - \frac{12 q \sigma (Ln^2 A)}{ p } \left[- \frac{\beta}{2\sigma} + \frac{\sqrt{-\Lambda}}{4\sigma} \left(\tan_A \left(\frac{\sqrt{-\Lambda}}{4} (\xi + \xi_0) \right) - \cot_A \left(\frac{\sqrt{-\Lambda}}{4} (\xi + \xi_0) \right)\right)\right. \nonumber\\& _\sigma \left. \left(- \frac{\beta}{2\sigma} + \frac{\sqrt{-\Lambda}}{4\sigma} \left(\tan_A \left( \frac{\sqrt{-\Lambda}}{4} (\xi + \xi_0)\right) - \cot_A \left( \frac{\sqrt{-\Lambda}}{4} (\xi + \xi_0)\right) \right)\right)^2\right]\end{align} where Λ = β2 − 4ασ and ξ = x − (q(Ln2A)(8ασ + β2) + pb0)t.

Family 2: If β2 − 4ασ > 0 and σ ≠ 0, then u6(x,t)=b0+3qLn2Ap(β2-Λtanh2A(Λ2(ξ+ξ0))), {u_6}(x,t) = {b_0} + \frac{{3qL{n^2}A}}{p}\left( {{\beta ^2} - \Lambda \tanh_A^2\left( {\frac{{\sqrt \Lambda }}{2}\left( {\xi + {\xi _0}} \right)} \right)}\right), u7(x,t)=b0+3qLn2Ap(β2-Λcoth2A(Λ2(ξ+ξ0))), {u_7}(x,t) = {b_0} + \frac{{3qL{n^2}A}}{p}\left( {{\beta ^2} - \Lambda \coth_A^2\left( {\frac{{\sqrt \Lambda }}{2}\left( {\xi + {\xi _0}} \right)} \right)}\right), u8±(x,t)=b0-12qσ(Ln2A)p[-β2σ-Λ2σ(tanhA(Λ(ξ+ξ0))±ipqsechA(Λ(ξ+ξ0)))+σ(-β2σ-Λ2σ(tanhA(Λ(ξ+ξ0))±ipqsechA(Λ(ξ+ξ0))))2], \begin{array}{l}u_8^ \pm (x,t) = {b_0} - {\mkern 1mu} \frac{{12q{\mkern 1mu} \sigma(L{n^2}A)}}{p}\left[ { - \frac{\beta }{{2\sigma }} - \frac{{\sqrt \Lambda }}{{2\sigma }}\left( {{{\tanh }_A}\left( {\sqrt \Lambda (\xi + {\xi _0})}\right) \pm i\sqrt {pq} {{{\mathop{\rm sech}\nolimits} }_A}\left( {\sqrt \Lambda (\xi + {\xi _0})} \right)} \right)} \right.\,\\\quad \quad \quad \quad \quad \left. { + \sigma {{\left( { - \frac{\beta}{{2\sigma }} - \frac{{\sqrt \Lambda }}{{2\sigma }}\left( {{{\tanh }_A}\left({\sqrt \Lambda (\xi + {\xi _0})} \right) \pm i\sqrt {pq} {{{\mathop{\rm sech}\nolimits} }_A}\left( {\sqrt \Lambda (\xi + {\xi _0})} \right)} \right)}\right)}^2}} \right],\end{array} u9±(x,t)=b0-12qσ(Ln2A)p[-β2σ-Λ2σ(cothA(Λ(ξ+ξ0))±pqcschA(Λ(ξ+ξ0)))+σ(-β2σ-Λ2σ(cothA(Λ(ξ+ξ0))±pqcschA(Λ(ξ+ξ0))))2], \begin{array}{l}u_9^ \pm (x,t) = {b_0} - {\mkern 1mu} \frac{{12q{\mkern 1mu} \sigma(L{n^2}A)}}{p}\left[ { - \frac{\beta }{{2\sigma }} - \frac{{\sqrt \Lambda }}{{2\sigma }}\left( {{{\coth }_A}\left( {\sqrt \Lambda (\xi + {\xi _0})}\right) \pm \sqrt {pq} {{{\mathop{\rm csch}\nolimits} }_A}\left( {\sqrt \Lambda (\xi + {\xi _0})} \right)} \right)} \right.\,\\\quad \quad \quad \quad \quad \left. { + \sigma {{\left( { - \frac{\beta}{{2\sigma }} - \frac{{\sqrt \Lambda }}{{2\sigma }}\left( {{{\coth }_A}\left({\sqrt \Lambda (\xi + {\xi _0})} \right) \pm \sqrt {pq} {{{\mathop{\rm csch}\nolimits} }_A}\left( {\sqrt \Lambda (\xi + {\xi _0})} \right)} \right)}\right)}^2}} \right],\end{array} u10(x,t)=b0-12qσ(Ln2A)p[-β2σ-Λ4σ(tanhA(Λ4(ξ+ξ0))+cothA(Λ4(ξ+ξ0)))+σ(-β2σ-Λ4σ(tanhA(Λ4(ξ+ξ0))+cothA(Λ4(ξ+ξ0))))2], \begin{align}u_{10} (x,t) =& b_0 - \frac{12 q \sigma (Ln^2 A)}{p} \left[- \frac{\beta}{2\sigma} - \frac{\sqrt{\Lambda}}{4\sigma} \left(\tanh_A \left(\frac{\sqrt{\Lambda}}{4} (\xi + \xi_0) \right)+ \coth_A \left( \frac{\sqrt{\Lambda}}{4} (\xi + \xi_0)\right)\right)\nonumber\right.\\&\left. +\sigma \left(- \frac{\beta}{2 \sigma} - \frac{ \sqrt{\Lambda}}{4\sigma}\left(\tanh_A \left(\frac{\sqrt{\Lambda}}{4} (\xi + \xi_0) \right) + \coth_A \left(\frac{\sqrt{\Lambda}}{4}(\xi + \xi_0) \right) \right)\right)^2\right],\end{align} where Λ = β2 − 4ασ and ξ = x − (q(Ln2A)(8ασ + β2) + pb0)t.

Family 3: If β = α = −, then u11(x,t)=b0-12q(Ln2A)p[-1(x-pb0t+ξ0)LnA+(1(x-pb0t+ξ0)LnA)2]. u_{11}(x,t) = b_0 - \frac{12q (Ln^2 A)}{p} \left[\frac{-1}{(x- p b_0 t + \xi_0) Ln A} + \left(\frac{1}{(x-pb_0t +\xi_0)Ln A}\right)^2\right].

Family 4:If α = 0 and β ≠ 0, then u12(x,t)=b0-12q(Ln2A)p[-pβ(coshA(β(ξ+ξ0))-sinhA(β(ξ+ξ0))+p)+(pβ(coshA(β(ξ+ξ0))-sinhA(β(ξ+ξ0))+p))2], \begin{align}u_{12} (x,t) =& b_0 - \frac{12q (Ln^2 A)}{p} \left[- \frac{p\beta}{ (\cosh_A (\beta (\xi + \xi_0))- \sinh_A (\beta (\xi + \xi_0)) +p )}\right.\nonumber\\&\left. + \left( \frac{p\beta}{(\cosh_A (\beta (\xi + \xi_0))- \sinh_A (\beta(\xi+\xi_0))+p)}\right)^2\right],\end{align} u13(x,t)=b0-12q(Ln2A)p[-β(sinhA(β(ξ+ξ0))+coshA(β(ξ+ξ0)))sinhA(β(ξ+ξ0))+coshA(β(ξ+ξ0))+q+(β(sinhA(β(ξ+ξ0))+coshA(β(ξ+ξ0)))sinhA(β(ξ+ξ0))+coshA(β(ξ+ξ0))+q)2], \begin{align}u_{13} (x,t) =& b_0 - \frac{12q (Ln^2 A)}{p} \left[ - \frac{\beta (\sinh_A (\beta(\xi + \xi_0)) +\cosh_A(\beta(\xi + \xi_0))) }{\sinh_A (\beta (\xi + \xi_0)) + \cosh_A(\beta (\xi+\xi_0)) +q}\right.\nonumber\\&\left. + \left(\frac{\beta(\sinh_A (\beta(\xi+\xi_0)) +\cosh_A(\beta (\xi+\xi_0)))}{\sinh_A (\beta(\xi+\xi_0)) + \cosh_A(\beta(\xi+\xi_0))+q}\right)^2\right],\end{align} where ξ = x − (qB2(Ln2A) + pb0)t.

Family 5: If β = λ, σ = (m ≠ 0) and α = 0, then u14(x,t)=b0-12qmλ(Ln2A)p[pAλ(x-(qλ2(Ln2A)+pb0)t+ξ0)p-mqAλ(x-(qλ2(Ln2A)+pb0)t+ξ0)+mλ(pAλ(x-(qλ2(Ln2A)+pb0)t+ξ0)p-mqAλ(x-(qλ2(Ln2A)+pb0)t+ξ0))2], \begin{align}u_{14} (x,t) = b_0 - \frac{12 qm \lambda (Ln^2 A)}{p}\left[ \frac{pA^{\lambda(x-(q\lambda^2(Ln^2 A)+p b_0)t +\xi_0)}}{p - mq A^{\lambda (x- (q\lambda^2 (Ln^2 A)+pb_0)t +\xi_0)}} + m\lambda\left(\frac{pA^{\lambda(x-(q\lambda^2 (Ln^2 A) + pb_0)t + \xi_0)}}{p-mqA^{\lambda(x- (q \lambda^2(Ln^2 A) + pb_0) t +\xi_0)}} \right)^2\right],\end{align} where ξ0 is an arbitrary constant.

Next, we will apply the same newly developed method for the mKdV problem represented in Eq. (2).

Solutions to the Modified KdV Equation

Consider the wave transformation in the following form u(x,t)=u(ξ),ξ=x-μt, u (x,t) = u (\xi), \quad \xi = x - \mu t, which reduce Eq. (2) into the following -μu+pu2u+qu=0. - \mu u' + pu^2 u' + qu''' = 0. Now, by balancing the highest-order derivative term and the highest-order nonlinear term in Eq. (27), we find that m = 1. Then, Eq. (27) will have a formal solution of the form u(ξ)=b0+b1Q(ξ). u (\xi) = b_0 + b_1 Q (\xi). By substituting Eq. (28) into Eq. (27) and collecting all terms with the same order of Q(ξ) together, the left-hand side of Eq. (27) is converted into a polynomial in Q(ξ). Setting each coefficient of each polynomial to zero, we derive a set of algebraic equations for b0,b1, and μ for the coefficients of Qi(ξ) in the following form Q0(ξ):b1αLnA(-μ+pb02+2qσα(Ln2A)+qβ2(Ln2A))=0, Q^0 (\xi) : \;\; b_1 \alpha Ln A (- \mu + pb_0^2 + 2q \sigma \alpha (Ln^2 A) + q\beta^2 (Ln^2 A)) = 0, Q1(ξ):b1αLnA(2pb0b1+6qβσ(Ln2A))+b1βLnA(-μ+pb02+2qσα(Ln2A)+qβ2(Ln2A))=0, Q^1 (\xi) : \;\; b_1 \alpha Ln A (2pb_0 b_1 + 6 q \beta \sigma (Ln^2 A)) + b_1 \beta Ln A(-\mu + pb_0^2 + 2 q \sigma \alpha (Ln^2 A) + q \beta^2 (Ln^2 A)) =0, Q2(ξ):b1αLnA(6qσ2+pb12)+b1βLnA(2pb0b1+6qβσ(Ln2A))+b1σLnA(-μpb02+2qσα(Ln2A)+qβ2(Ln2A))=0, \begin{align*}Q^2 (\xi) : \;\;& b_1 \alpha Ln A (6 q \sigma^2 + pb_1^2) + b_1 \beta Ln A (2 p b_0 b_1 + 6 q \beta \sigma (Ln^2 A)) \nonumber\\& + b_1 \sigma Ln A (- \mu pb _0^2 + 2 q \sigma \alpha (Ln^2 A) + q \beta^2 (Ln^2 A)) = 0,\end{align*} Q3(ξ):b1βLnA(6qσ2(Ln2A)+pb12)+b1σLnA(2pb0b1+6qβσ(Ln2A))=0, Q^3(\xi) : \;\; b_1 \beta Ln A (6 q \sigma^2 (Ln^2 A) + pb_1^2) + b_1 \sigma Ln A (2 p b_0 b_1 + 6q \beta \sigma (Ln^2 A)) = 0, Q4(ξ):b1σLnA(6qσ2(Ln2A)+pb12)=0. Q^4(\xi): \;\; b_1 \sigma Ln A (6q \sigma^2 (Ln^2 A) + pb_1^2) =0.

Fig. 1

Graphics of the solution equation (14) (u5(x,t)) corresponding to the values

β = 3, α = 4, σ = 2, A = 2.65, p = 1, q = 0.9, b0 = 1 and ξ0 = −0.5 (a) 3D plot and (b) contour plot.

Fig. 2

Graphics of the solution equation (28) (u14(x,t)) corresponding to the values

λ = 1.5, m = 3, A = 2.7, p = 1.2, q = 0.9, b0 = 3 and ξ0 = 1.5 (a) 3D plot and (b) contour plot.

Last, by solving the above system of equations for b0, b1 and μ we obtain the following values b0=±-3q2pβLnA,b1=±-6qpσLnA,μ=-12q(Ln2A)(β2-4σα) b_0 = \pm \sqrt{- \frac{3q}{2p}} \beta Ln A ,\;\; b_1 = \pm \sqrt{- \frac{6q}{p}} \sigma Ln A , \;\;\mu = - \frac{1}{2} q (Ln ^2 A ) (\beta^2 - 4\sigma \alpha)

The solutions family of Eq. (2) that corresponds to Eq. (26) and Eq. (29) is as follows: Family 1: If β2 − 4ασ < 0 and σ ≠ 0, then u1±(x,t)=±LnA3qΛ2ptanA(-Λ2(ξ+xi0) u_1^\pm (x,t) = \pm Ln A \sqrt{\frac{3q \Lambda}{2p}} \tan_A \left(\frac{\sqrt{-\Lambda}}{2} (\xi +xi_0\right) u2±(x,t)=±LnA3qΛ2ptanA(-Λ2(ξ+ξ0)) u_2^\pm (x,t) = \pm Ln A \sqrt{\frac{3q\Lambda}{2p}} \tan_A \left(\frac{\sqrt{-\Lambda}}{2} (\xi + \xi_0)\right) u3±(x,t)=±LnA3qΛ2p(tanA(-Λ(ξ+ξ0))±pqsecA(-Λ(ξ+ξ0))) u_3^{\pm} (x,t) = \pm Ln A \sqrt{\frac{3q\Lambda}{2p}}\left(\tan_A \left(\sqrt{-\Lambda} (\xi + \xi_0) \right)\pm \sqrt{pq} \sec_A \left(\sqrt{-\Lambda} (\xi + \xi_0) \right)\right) u4±(x,t)=±LnA3qΛ2p(cotA(-Λ(ξ+ξ0))±pqcscA(-Λ(ξ+ξ0))) u_4^{\pm} (x,t) = \pm Ln A \sqrt{\frac{3q\Lambda}{2p}}\left(\cot_A \left(\sqrt{-\Lambda} (\xi + \xi_0) \right)\pm \sqrt{pq} \csc_A \left(\sqrt{-\Lambda} (\xi + \xi_0) \right)\right) u5±(x,t)=±LnA3qΛ8p×(tanA(-Λ4(ξ+ξ0))-cotA(-Λ4(ξ+ξ0)) u_5^{\pm} (x,t) = \pm Ln A \sqrt{\frac{3q\Lambda}{8p}} \times \left(\tan_A \left( \frac{\sqrt{-\Lambda}}{4} (\xi + \xi_0)\right)- \cot_A \left(\frac{\sqrt{-\Lambda}}{4} (\xi + \xi_0 \right)\right) where Λ = β2 − 4ασ and ξ=x+12q(Ln2A)Λt \xi = x + {1 \over 2}q(L{n^2}A)\Lambda t .

Family 2: If β2 − 4ασ > 0 and, then u6±(x,t)=±LnA-3qΛ2ptanhA(Λ2(ξ+xi0) u_6^\pm (x,t) = \pm Ln A \sqrt{-\frac{3q \Lambda}{2p}} \tanh_A \left(\frac{\sqrt{\Lambda}}{2} (\xi +xi_0\right) u7±(x,t)=±LnA-3qΛ2pcothA(Λ2(ξ+ξ0)) u_7^\pm (x,t) = \pm Ln A \sqrt{-\frac{3q\Lambda}{2p}} \coth_A \left(\frac{\sqrt{\Lambda}}{2} (\xi + \xi_0)\right) u8±(x,t)=±LnA-3qΛ2p(tanhA(Λ(ξ+ξ0))±ipqsechA(Λ(ξ+ξ0))) u_8^{\pm} (x,t) = \pm Ln A \sqrt{-\frac{3q\Lambda}{2p}}\left(\tanh_A \left(\sqrt{\Lambda} (\xi + \xi_0) \right)\pm i\sqrt{pq} \mathrm{sech}_A \left(\sqrt{\Lambda} (\xi + \xi_0) \right)\right) u9±(x,t)=±LnA-3qΛ2p(cothA(Λ(ξ+ξ0))±pqcschA(Λ(ξ+ξ0))) u_9^{\pm} (x,t) = \pm Ln A \sqrt{-\frac{3q\Lambda}{2p}}\left(\coth_A \left(\sqrt{\Lambda} (\xi + \xi_0) \right)\pm \sqrt{pq} \mathrm{csch}_A \left(\sqrt{\Lambda} (\xi + \xi_0) \right)\right) u10±(x,t)=±LnA-3qΛ8p(tanhA(Λ4(ξ+ξ0))+cothA(Λ4(ξ+ξ0)) u_{10}^{\pm} (x,t) = \pm Ln A \sqrt{-\frac{3q\Lambda}{8p}}\left(\tanh_A \left(\frac{\sqrt{\Lambda}}{4} (\xi + \xi_0)\right)+ \coth_A \left(\frac{\sqrt{\Lambda}}{4} (\xi + \xi_0\right)\right) where Λ = β2 − 4ασ and ξ0=x+12q(Ln2A)Λt {\xi _0} = x + {1 \over 2}q(L{n^2}A)\Lambda t (Ln2At.

Family 3: If α = 0 and β ≠ 0, then u11±(x,t)=±-qpβLnA[-32-6pcoshA(β(ξ+ξ0))-sinhA(β(ξ+ξ0))+p], u_{11}^\pm (x,t) = \pm \sqrt{- \frac{q}{p}} \beta Ln A \left[\sqrt{-\frac{3}{2}} \mp \frac{\sqrt{-6}p}{ \cosh_A (\beta (\xi + \xi_0)) - \sinh_A (\beta(\xi + \xi_0)) +p}\right], u12±(x,t)=±-qpβLnA[-32-6(sinhA(β(ξ+ξ0))+coshA(β(ξ+ξ0))sinhA(β(ξ+ξ0))+coshA(β(ξ+ξ0))+q], u_{12}^\pm (x,t) = \pm \sqrt{- \frac{q}{p}} \beta Ln A \left[\sqrt{-\frac{3}{2}} \mp \frac{\sqrt{-6} (\sinh_A (\beta (\xi+\xi_0)) +\cosh_A (\beta (\xi+ \xi_0))}{\sinh_A (\beta (\xi + \xi_0)) +\cosh_A (\beta (\xi + \xi_0)) +q}\right], where ξ=x-12qβ2(Ln2A)t \xi = x - {1 \over 2}q{\beta ^2}(L{n^2}A)t .

Fig. 3

Graphics of the solution equation (28) (u1+(x,t)) (u_1^ + (x,t)) corresponding to the values

β = 4, α = 2, σ = 3, A = 2.6, p = 1, q = 0.9 and ξ0 = 0 (a) 3D plot and (b) contour plot.

Fig. 4

Graphics of the solution equation (34) (u7-(x,t)) (u_7^ - (x,t)) corresponding to the values β = 3, α = 1, σ = 2, A = e, p = 1, q = 1 and ξ0 = 0 (a) 3D plot and (b) contour plot.

Family 4: If β = λ, σ = (m ≠ 0) and α = 0, then u13±(x,t)±-qpλLnA[32+-6m(pAλ(x+12qλ2Ln2At+ξ0)p-mqAλ(x+12qλ2Ln2At+ξ0))], u_{13}^\pm (x,t) \pm \sqrt{- \frac{q}{p}} \lambda Ln A \left [\sqrt{\frac{3}{2}} + \sqrt{-6}m \left(\frac{pA^{\lambda(x + \frac{1}{2} q \lambda^2 Ln^2 A t + \xi_0)}}{p - mqA^{\lambda(x + \frac{1}{2} q \lambda^2 Ln^2 A t + \xi_0)}}\right)\right], where ξ0 is an arbitrary constant.

Conclusions

Many classical methods to be used to determine exact solutions of nonlinear PDEs are particular cases of the new extended direct algebraic approach. Thus, one can easily deduce that the new extended direct algebraic approach should derive more exact solutions. Following this idea, we implemented the new extended direct algebraic method to the KdVE and the mKdVE. Various types of explicit exact solution families covering finite trigonometric, exponential, and hyperbolic function series to both the KdVE and the mKdVE were constructed by the approach. The solutions modelling travelling waves in different forms were represented explicitly. The implementation of the new extended direct algebraic approach to the other nonlinear PDEs appears as a future study for many researchers.

Fig. 1

Graphics of the solution equation (14) (u5(x,t)) corresponding to the valuesβ = 3, α = 4, σ = 2, A = 2.65, p = 1, q = 0.9, b0 = 1 and ξ0 = −0.5 (a) 3D plot and (b) contour plot.
Graphics of the solution equation (14) (u5(x,t)) corresponding to the valuesβ = 3, α = 4, σ = 2, A = 2.65, p = 1, q = 0.9, b0 = 1 and ξ0 = −0.5 (a) 3D plot and (b) contour plot.

Fig. 2

Graphics of the solution equation (28) (u14(x,t)) corresponding to the valuesλ = 1.5, m = 3, A = 2.7, p = 1.2, q = 0.9, b0 = 3 and ξ0 = 1.5 (a) 3D plot and (b) contour plot.
Graphics of the solution equation (28) (u14(x,t)) corresponding to the valuesλ = 1.5, m = 3, A = 2.7, p = 1.2, q = 0.9, b0 = 3 and ξ0 = 1.5 (a) 3D plot and (b) contour plot.

Fig. 3

Graphics of the solution equation (28) 



(u1+(x,t))
(u_1^ + (x,t))


 corresponding to the valuesβ = 4, α = 2, σ = 3, A = 2.6, p = 1, q = 0.9 and ξ0 = 0 (a) 3D plot and (b) contour plot.
Graphics of the solution equation (28) (u1+(x,t)) (u_1^ + (x,t)) corresponding to the valuesβ = 4, α = 2, σ = 3, A = 2.6, p = 1, q = 0.9 and ξ0 = 0 (a) 3D plot and (b) contour plot.

Fig. 4

Graphics of the solution equation (34) 



(u7-(x,t))
(u_7^ - (x,t))


 corresponding to the values β = 3, α = 1, σ = 2, A = e, p = 1, q = 1 and ξ0 = 0 (a) 3D plot and (b) contour plot.
Graphics of the solution equation (34) (u7-(x,t)) (u_7^ - (x,t)) corresponding to the values β = 3, α = 1, σ = 2, A = e, p = 1, q = 1 and ξ0 = 0 (a) 3D plot and (b) contour plot.

Korteweg, Diederik Johannes, and Gustav De Vries. “XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39.240: 422–443, 1895. KortewegDiederik Johannes De VriesGustav “XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39 240 422 443 1895 Search in Google Scholar

Wadati, Miki, and Morikazu Toda. “The exact N-soliton solution of the Korteweg-de Vries equation.” Journal of the Physical Society of Japan, 32.5: 1403–1411, 1972. WadatiMiki TodaMorikazu “The exact N-soliton solution of the Korteweg-de Vries equation.” Journal of the Physical Society of Japan 32 5 1403 1411 1972 Search in Google Scholar

Hirota, R. “Exact solutions of the Korteweg-de Vries equation for multiple solitons.” Physical Review Letters, 27: 1192–1194, 1971. HirotaR “Exact solutions of the Korteweg-de Vries equation for multiple solitons.” Physical Review Letters 27 1192 1194 1971 Search in Google Scholar

Miura, Robert M., Clifford S. Gardner, and Martin D. Kruskal. “Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion.” Journal of Mathematical physics, 9: 1204–1209, 1968. MiuraRobert M. GardnerClifford S. KruskalMartin D. “Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion.” Journal of Mathematical physics 9 1204 1209 1968 Search in Google Scholar

Ankiewicz, A., Mahyar Bokaeeyan, and N. Akhmediev. “Shallow-water rogue waves: An approach based on complex solutions of the Korteweg–de Vries equation.” Physical Review E, 99: 050201, 2019. AnkiewiczA. BokaeeyanMahyar AkhmedievN. “Shallow-water rogue waves: An approach based on complex solutions of the Korteweg–de Vries equation.” Physical Review E 99 050201 2019 Search in Google Scholar

Ji, Jia-Liang, and Zuo-Nong Zhu. “On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions.” Communications in Nonlinear Science and Numerical Simulation, 42: 699–708, 2017. JiJia-Liang ZhuZuo-Nong “On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions.” Communications in Nonlinear Science and Numerical Simulation 42 699 708 2017 Search in Google Scholar

Ma, Wen-Xiu. “The inverse scattering transform and soliton solutions of a combined modified Korteweg–de Vries equation.” Journal of Mathematical Analysis and Applications, 471: 796–811, 2019. MaWen-Xiu “The inverse scattering transform and soliton solutions of a combined modified Korteweg–de Vries equation.” Journal of Mathematical Analysis and Applications 471 796 811 2019 Search in Google Scholar

Liang, Jin-Fu, and Xun Wang. “Investigation of Interaction Solutions for Modified Korteweg-de Vries Equation by Consistent Riccati Expansion Method.” Mathematical Problems in Engineering 2019 (2019). LiangJin-Fu WangXun “Investigation of Interaction Solutions for Modified Korteweg-de Vries Equation by Consistent Riccati Expansion Method.” Mathematical Problems in Engineering 2019 2019 Search in Google Scholar

Wazzan, Luwai. “A modified tanh–coth method for solving the KdV and the KdV–Burgers’ equations.” Communications in Nonlinear Science and Numerical Simulation, 14: 443–450, 2009. WazzanLuwai “A modified tanh–coth method for solving the KdV and the KdV–Burgers’ equations.” Communications in Nonlinear Science and Numerical Simulation 14 443 450 2009 Search in Google Scholar

Wang, Mingliang, Xiangzheng Li, and Jinliang Zhang. “The (G′ G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics.” Physics Letters A, 372: 417–423, 2008. WangMingliang LiXiangzheng ZhangJinliang “The (G′ G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics.” Physics Letters A 372 417 423 2008 Search in Google Scholar

Zheng-De, Dai, Liu Zhen-Jiang, and Li Dong-Long. “Exact periodic solitary-wave solution for KdV equation.” Chinese Physics Letters, 25: 1531, 2008. Zheng-DeDai Zhen-JiangLiu Dong-LongLi “Exact periodic solitary-wave solution for KdV equation.” Chinese Physics Letters 25 1531 2008 Search in Google Scholar

Lü, DaZhao, Cui, Y. Y, Lu, C., Wei, C. Y,. “Novel composite function solutions of the modified KdV equation.” Applied mathematics and computation, 217: 283–288, 2010. DaZhao CuiY. Y LuC. WeiC. Y “Novel composite function solutions of the modified KdV equation.” Applied mathematics and computation 217 283 288 2010 Search in Google Scholar

Wazwaz, A-M. “A sine-cosine method for handlingnonlinear wave equations.” Mathematical and Computer modelling, 40: 499–508, 2004. WazwazA-M “A sine-cosine method for handlingnonlinear wave equations.” Mathematical and Computer modelling 40 499 508 2004 Search in Google Scholar

He, Ji-Huan, and Xu-Hong Wu. “Exp-function method for nonlinear wave equations.” Chaos, Solitons & Fractals, 30: 700–708, 2006. HeJi-Huan WuXu-Hong “Exp-function method for nonlinear wave equations.” Chaos, Solitons & Fractals 30 700 708 2006 Search in Google Scholar

El-Ajou, Ahmad, Oqielat, M. N., Al-Zhour, Z., Kumar, S., Momani, S,. “Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative.” Chaos: An Interdisciplinary Journal of Nonlinear Science, 29: 093102, 2019. El-AjouAhmad OqielatM. N. Al-ZhourZ. KumarS. MomaniS “Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative.” Chaos: An Interdisciplinary Journal of Nonlinear Science 29 093102 2019 Search in Google Scholar

Kumar, Sunil, Kumar, A., Momani, S., Abdelfattah, M., Sooppy, M., “Numerical solutions of nonlinear fractional model arising in the appearance of the stripe patterns in two-dimensional systems.” Advances in Difference Equations 2, 413, 2019. KumarSunil KumarA. MomaniS. AbdelfattahM. SooppyM. “Numerical solutions of nonlinear fractional model arising in the appearance of the stripe patterns in two-dimensional systems.” Advances in Difference Equations 2 413 2019 Search in Google Scholar

Ghanbari, Behzad, Sunil Kumar, and Ranbir Kumar. “A study of behaviour for immune and tumor cells in immuno-genetic tumour model with non-singular fractional derivative.” Chaos, Solitons & Fractals, 133: 109619, 2020. GhanbariBehzad KumarSunil KumarRanbir “A study of behaviour for immune and tumor cells in immuno-genetic tumour model with non-singular fractional derivative.” Chaos, Solitons & Fractals 133 109619 2020 Search in Google Scholar

Kumar, S., Nisar, K. S., Kumar, R., Cattani, C., & Samet, B., “A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force.” Mathematical Methods in the Applied Sciences. 2019. KumarS. NisarK. S. KumarR. CattaniC. SametB. “A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force.” Mathematical Methods in the Applied Sciences 2019 Search in Google Scholar

Jleli, M., Kumar, S., Kumar, R., & Samet, B. “Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-Cattani via the homotopy perturbation transform method.” Alexandria Engineering Journal (2019). JleliM. KumarS. KumarR. SametB “Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-Cattani via the homotopy perturbation transform method.” Alexandria Engineering Journal 2019 Search in Google Scholar

Kumar, S., Kumar, A., Abbas, S., Al Qurashi, M., & Baleanu, D “A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations.” Advances in Difference Equations, (2020): 1–18, 2020. KumarS. KumarA. AbbasS. Al QurashiM. BaleanuD “A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations.” Advances in Difference Equations 2020 1 18 2020 Search in Google Scholar

Korkmaz, Alper. “Exact solutions of space-time fractional EW and modified EW equations.” Chaos, Solitons & Fractals, 96: 132–138, 2017. KorkmazAlper “Exact solutions of space-time fractional EW and modified EW equations.” Chaos, Solitons & Fractals 96 132 138 2017 Search in Google Scholar

Guner, Ozkan, Ahmet Bekir, and Alper Korkmaz. “Tanh-type and sech-type solitons for some space-time fractional PDE models.” The European Physical Journal Plus, 132: 92, 2017. GunerOzkan BekirAhmet KorkmazAlper “Tanh-type and sech-type solitons for some space-time fractional PDE models.” The European Physical Journal Plus 132 92 2017 Search in Google Scholar

Khater, Mostafa MA, Dianchen Lu, and Raghda AM Attia. “Lump soliton wave solutions for the (2+ 1)-dimensional Konopelchenko–Dubrovsky equation and KdV equation.” Modern Physics Letters B, 33: 1950199, 2019. KhaterMostafa MA LuDianchen AttiaRaghda AM “Lump soliton wave solutions for the (2+ 1)-dimensional Konopelchenko–Dubrovsky equation and KdV equation.” Modern Physics Letters B 33 1950199 2019 Search in Google Scholar

Khater, Mostafa, Raghda AM Attia, and Dianchen Lu. “Modified auxiliary equation method versus three nonlinear fractional biological models in present explicit wave solutions.” Mathematical and Computational Applications, 24: 1, 2019. KhaterMostafa AttiaRaghda AM LuDianchen “Modified auxiliary equation method versus three nonlinear fractional biological models in present explicit wave solutions.” Mathematical and Computational Applications 24 1 2019 Search in Google Scholar

Lu, D., Tariq, K. U., Osman, M. S., Baleanu, D., Younis, M., & Khater, M. M. A. “New analytical wave structures for the (3+ 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications.” Results in Physics, 14: 102491, 2019. LuD. TariqK. U. OsmanM. S. BaleanuD. YounisM. KhaterM. M. A “New analytical wave structures for the (3+ 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications.” Results in Physics 14 102491 2019 Search in Google Scholar

Osman, M. S., Korkmaz, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., & Zhou, Q “The unified method for conformable time fractional Schrödinger equation with perturbation terms.” Chinese Journal of Physics, 56: 2500–2506, 2018. OsmanM. S. KorkmazA. RezazadehH. MirzazadehM. EslamiM. ZhouQ “The unified method for conformable time fractional Schrödinger equation with perturbation terms.” Chinese Journal of Physics 56 2500 2506 2018 Search in Google Scholar

Kurt, Ali. “New periodic wave solutions of a time fractional integrable shallow water equation.” Applied Ocean Research, 85: 128–135, 2019. KurtAli “New periodic wave solutions of a time fractional integrable shallow water equation.” Applied Ocean Research 85 128 135 2019 Search in Google Scholar

Tasbozan, Orkun, Ali Kurt, and Ali Tozar. “New optical solutions of complex Ginzburg–Landau equation arising in semiconductor lasers.” Applied Physics B, 125: 104, 2019. TasbozanOrkun KurtAli TozarAli “New optical solutions of complex Ginzburg–Landau equation arising in semiconductor lasers.” Applied Physics B 125 104 2019 Search in Google Scholar

Tasbozan, Orkun, et al. “New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves.” Ocean Engineering, 161: 62–68, 2018. TasbozanOrkun “New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves.” Ocean Engineering 161 62 68 2018 Search in Google Scholar

Tasbozan, O., Şenol, M., Kurt, A., & Özkan, O. “Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class.” Journal of King Saud University-Science (2018). TasbozanO. ŞenolM. KurtA. ÖzkanO “Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class.” Journal of King Saud University-Science 2018 Search in Google Scholar

Raza, Nauman. “New optical solitons in nonlinear negative-index materials with Bohm potential.” Indian Journal of Physics, 93: 657–663, 2019. RazaNauman “New optical solitons in nonlinear negative-index materials with Bohm potential.” Indian Journal of Physics 93 657 663 2019 Search in Google Scholar

Raza, N., Afzal, U., Butt, A. R., & Rezazadeh, H. “Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities.” Optical and Quantum Electronics, 51: 107, 2019. RazaN. AfzalU. ButtA. R. RezazadehH “Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities.” Optical and Quantum Electronics 51 107 2019 Search in Google Scholar

Javid, Ahmad, and Nauman Raza. “Singular and dark optical solitons to the well posed Lakshmanan–Porsezian–Daniel model.” Optik, 171: 120–129, 2018. JavidAhmad RazaNauman “Singular and dark optical solitons to the well posed Lakshmanan–Porsezian–Daniel model.” Optik 171 120 129 2018 Search in Google Scholar

Raza, Nauman, and Ahmad Javid. “Dynamics of optical solitons with Radhakrishnan–Kundu–Lakshmanan model via two reliable integration schemes.” Optik, 178: 557–566, 2019. RazaNauman JavidAhmad “Dynamics of optical solitons with Radhakrishnan–Kundu–Lakshmanan model via two reliable integration schemes.” Optik 178 557 566 2019 Search in Google Scholar

Rezazadeh, Hadi. “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity.” Optik, 167: 218–227, 2018. RezazadehHadi “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity.” Optik 167 218 227 2018 Search in Google Scholar

Dusunceli, Faruk. “New exponential and complex traveling wave solutions to the Konopelchenko-Dubrovsky model.” Advances in Mathematical Physics, 2019, 2019, https://doi.org/10.1155/2019/7801247. DusunceliFaruk “New exponential and complex traveling wave solutions to the Konopelchenko-Dubrovsky model.” Advances in Mathematical Physics 2019 2019 https://doi.org/10.1155/2019/7801247 Search in Google Scholar

Tekiyeh, R. M., Manafian, J., Baskonus, H. M., & Dusunceli, F “Applications of He's semi-inverse variational method and ITEM to the nonlinear long-short wave interaction system.” International Journal of Advanced and Applied Sciences, 4: 93–100, 2018. TekiyehR. M. ManafianJ. BaskonusH. M. DusunceliF “Applications of He's semi-inverse variational method and ITEM to the nonlinear long-short wave interaction system.” International Journal of Advanced and Applied Sciences 4 93 100 2018 Search in Google Scholar

Düşünceli, F., Başkonuş, H. M., Alaattin, E. S. E. N., & Bulut, H. “New mixed-dark soliton solutions to the hyperbolic generalization of the Burgers equation.” Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2: 503–511, 2019. DüşünceliF. BaşkonuşH. M. AlaattinE. S. E. N. BulutH “New mixed-dark soliton solutions to the hyperbolic generalization of the Burgers equation.” Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2 503 511 2019 Search in Google Scholar

Dusunceli, Faruk. “New Exact Solutions for Generalized (3+ 1) Shallow Water-Like (SWL) Equation.” Applied Mathematics and Nonlinear Sciences, 4: 365–370, 2019. DusunceliFaruk “New Exact Solutions for Generalized (3+ 1) Shallow Water-Like (SWL) Equation.” Applied Mathematics and Nonlinear Sciences 4 365 370 2019 Search in Google Scholar

Rezazadeh, H., Tariq, H., Eslami, M., Mirzazadeh, M., & Zhou, Q “New exact solutions of nonlinear conformable time-fractional Phi-4 equation.” Chinese Journal of Physics, 56: 2805–2816, 2018. RezazadehH. TariqH. EslamiM. MirzazadehM. ZhouQ “New exact solutions of nonlinear conformable time-fractional Phi-4 equation.” Chinese Journal of Physics 56 2805 2816 2018 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo