Open Access

Glial fibrillary acidic protein as a serum neuromarker of brain injury in pediatric patients with congenital heart defects undergoing cardiac surgery


Cite

Wu W, He J, Shao X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017. Medicine (Baltimore). 2020;99(23):e20593. Search in Google Scholar

Marino BS, Lipkin PH, Newburger JW, et al. American Heart Association Congenital Heart Defects Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Stroke Council, Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012;126:1143-1172. Search in Google Scholar

Kuhn VA, Carpenter JL, Zurakowski D, et al. Determinants of neurological outcome in neonates with congenital heart disease following heart surgery. Pediatr Res. 2020;10. 1038/s41390-020-1085-1. Search in Google Scholar

Jeffrey Brennan, Kevin K. Wang, Richard Rubenstein, Claudia S. Robertson, Harvey Levin. Chapter 26 - Neuropsychological testing. Editor(s): Alan H.B. Wu, W. Frank Peacock. Biomarkers for Traumatic Brain Injury, Academic Press, 2020, Pages 397-409, ISBN 9780128163467, https://doi.org/10.1016/B978-0-12-816346-7.00026-9. Search in Google Scholar

Chiperi LE, Tecar C, Toganel R. Neuromarkers which can predict neurodevelopmental impairment among children with congenital heart defects after cardiac surgery: A systematic literature review. Dev Neurorehabil. 2023 Apr;26(3):206-215. doi: 10.1080/17518423.2023.2166618. Search in Google Scholar

Frankenburg, W.K. (1967). “The Denver Developmental Screening Test”. The Journal of Pediatrics. 71 (2): 181–191. doi:10.1016/S0022-3476(67)80070-2. Search in Google Scholar

Christine J. Ware, Christine Faust Sloss, Cary S. Chugh & Karen S. Budd (2002) Adaptations of the Denver II Scoring System to Assess the Developmental Status of Children With Medically Complex Conditions, Children›s Health Care, 31:4, 255-272, DOI: 10.1207/S15326888CHC3104_1 Search in Google Scholar

Verrall CE, Blue GM, Loughran-Fowlds A, et al. ‘Big issues’ in neurodevelopmental for children and adults with congenital heart disease. Open Heart. 2019;6(2):e000998. Search in Google Scholar

Heidi M. Feldman (2005) Language Learning With an Injured Brain, Language Learning and Development, 1:3-4, 265-288, DOI: 10.1080/15475441.2005.9671949 Search in Google Scholar

Rowe, M. L., Levine, S. C., Fisher, J. A., & Goldin-Meadow, S. (2009). Does linguistic input play the same role in language learning for children with and without early brain injury? Developmental Psychology, 45(1), 90–102. Search in Google Scholar

Zamani, G., Tajdini, M., Ashrafi, M., Shajari, H., Mehdizadeh, M., & Zaki Dizaji, M. (2019). Impact of Chronic Hypoxia on Neurodevelopment of Children with Cyanotic Congenital Heart Disease. Journal of Iranian Medical Council, 2(4), 86-91. Search in Google Scholar

Sanchez-de-Toledo J, Chrysostomou C, Munoz R, Lichtenstein S, Sao-Avilés CA, Wearden PD, Morell VO, Clark RS, Toney N, Bell MJ. Cerebral regional oxygen saturation and serum neuromarkers for the prediction of adverse neurologic outcome in pediatric cardiac surgery. Neurocrit Care. 2014 Aug;21(1):133-9. doi: 10.1007/s12028-013-9934-y. Search in Google Scholar

Kussman BD, Wypij D, Laussen PC, Soul JS, Bellinger DC, DiNardo JA, et al. Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation. 2010;122(3):245–54. Search in Google Scholar

Eng LF, Ghirnikar RS, Lee YL (October 2000). “Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000)”. Neurochemical Research. 25 (9–10): 1439–1451. doi:10.1023/A:1007677003387. Search in Google Scholar

Sjölin K, Kultima K, Larsson A, Freyhult E, Zjukovskaja C, Alkass K, Burman J (June 2022). “Distribution of five clinically important neuroglial proteins in the human brain”. Molecular Brain. 15 (1): 52. doi:10.1186/s13041-022-00935-6. PMC 9241296. PMID 35765081. Search in Google Scholar

“Protein Found to Predict Brain Injury in Children on ECMO Life Support”. Johns Hopkins Children’s Center. 19 November 2010. Retrieved 11 December 2010 Search in Google Scholar

Hernández-García C, Rodríguez-Rodríguez A, Egea-Guerrero JJ. Brain injury biomarkers in the setting of cardiac surgery: Still a world to explore, Brain Injury. 2016;30:10–17. Search in Google Scholar

Vergine M, Vedovelli L, Simonato M, Tonazzo V, Correani A, Cainelli E et al. Perioperative Glial Fibrillary Acidic Protein Is Associated with Long-Term Neurodevelopment Outcome of Infants with Congenital Heart Disease. Children (Basel). 2021;8:655. Search in Google Scholar

Graham EM, Martin RH, Atz AM, Hamlin-Smith K, Kavarana MN, Bradley SM, Alsoufi B, Mahle WT, Everett AD. Association of intraoperative circulating-brain injury biomarker and neurodevelopmental outcomes at 1 year among neonates who have undergone cardiac surgery. J Thorac Cardiovasc Surg. 2019;157(5):1996–2002. doi:10.1016/j.jtcvs.2019.01.040. Search in Google Scholar

Vedovelli L, Padalino M, Suppiej A, Sartori S, Falasco G, Simonato M et al. Cardiopulmonary-Bypass Glial Fibrillary Acidic Protein Correlates With Neurocognitive Skills. Ann Thorac Surg. 2018;106 (3):792-798. Search in Google Scholar

eISSN:
2668-7763
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other