Cite

1. Das A, Sinha M, Datta S, et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol. 2015;185(10):2596-2606.10.1016/j.ajpath.2015.06.001460775326118749 Search in Google Scholar

2. Dehne N, Jung M, Mertens C, Mora J, Weigert A. Macrophage Heterogeneity During Inflammation. In: Parnham, M.J. (eds) Compendium of Inflammatory Diseases. Springer, Basel. 2016; 865–874.10.1007/978-3-7643-8550-7_131 Search in Google Scholar

3. Wong KL, Yeap WH, Yi Tai JJ. The three human monocyte subsets: implications for health and disease. Immunol Res. 2012; 53(1-3):41-57.10.1007/s12026-012-8297-322430559 Search in Google Scholar

4. Han X, Ding S, Jiang H, Liu G. Roles of Macrophages in the Development and Treatment of Gut Inflammation. Front Cell Dev Biol. 2021;9:625423.10.3389/fcell.2021.625423796065433738283 Search in Google Scholar

5. Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021;18:579–587.10.1038/s41423-020-00541-3749104532934339 Search in Google Scholar

6. Zhang C, Yang M, Ericsson AC. Function of Macrophages in Disease: Current Understanding on Molecular Mechanisms. Front Immunol. 2021;12: 620510.10.3389/fimmu.2021.620510798247933763066 Search in Google Scholar

7. Gordon S, Martinez-Pomares L. Physiological roles of macrophages. Pflugers Arch. 2017; 469: 365–374.10.1007/s00424-017-1945-7536265728185068 Search in Google Scholar

8. Kapellos TS, Bonaguro L, Gemünd I et al. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol.2019;10: 2035.10.3389/fimmu.2019.02035672875431543877 Search in Google Scholar

9. Wolf D, Ley K. Immunity and Inflammation in Atherosclerosis. Circ Res. 2019;124(2):315-32710.1161/CIRCRESAHA.118.313591634248230653442 Search in Google Scholar

10. Kobiyama K, Ley K. Atherosclerosis: A Chronic Inflammatory Disease with an Autoimmune Component. Atherosclerosis. Circ Res. 2018;123(10):1118-112010.1161/CIRCRESAHA.118.313816629875430359201 Search in Google Scholar

11. den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser TR, Rutledge JC. Fatty acids from very low-density lipoprotein lipolysis products induce lipid droplet accumulation in human monocytes. J Immunol. 2010;184:3927–393610.4049/jimmunol.0903475284379720208007 Search in Google Scholar

12. Xu L, Perrard XD, Perrard JL, et al. Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2015; 35(8): 1787–1797.10.1161/ATVBAHA.115.305609451454226112011 Search in Google Scholar

13. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118(4):547-63.10.1161/CIRCRESAHA.115.30624926892957 Search in Google Scholar

14. Nayor M, Brown KJ, Vasan RS. The Molecular Basis of Predicting Atherosclerotic Cardiovascular Disease Risk. Circ Res. 2021;128(2):287-303.10.1161/CIRCRESAHA.120.315890783923633476202 Search in Google Scholar

15. Șerban GM, Mănescu IB, Manu DR, Dobreanu M. Optimization of a density gradient centrifugation protocol for isolation of peripheral blood mononuclear cells, Acta Medica Marisiensis. 2018; 64:83-9010.2478/amma-2018-0011 Search in Google Scholar

16. Tiihonen K, Rautonen N, Alhoniemi E, Ahotupa M, Stowell J, Vasankari T. Postprandial triglyceride response in normolipidemic, hyperlipidemic and obese subjects - the influence of polydextrose, a non-digestible carbohydrate. Nutr J. 2015;14:23.10.1186/s12937-015-0009-0436581425889643 Search in Google Scholar

17. Orem A, Yaman SO, Altinkaynak B, et al. Relationship between postprandial lipemia and atherogenic factors in healthy subjects by considering gender differences. Clin Chim Acta. 2018;480:34-40.10.1016/j.cca.2018.01.03829408168 Search in Google Scholar

18. Nordestgaard, Børge G. A Test in Context: Lipid Profile, Fasting Versus Nonfasting. J Am Coll Cardiol. 2017;70(13): 1637-1646.10.1016/j.jacc.2017.08.00628935041 Search in Google Scholar

19. Langsted A, Nordestgaard BG. Nonfasting versus fasting lipid profile for cardiovascular risk prediction. Pathology. 2019;51(2):131-141.10.1016/j.pathol.2018.09.06230522787 Search in Google Scholar

20. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299-308.10.1001/jama.298.3.29917635890 Search in Google Scholar

21. Mihas C, Kolovou GD, Mikhailidis DP, et al. Diagnostic value of postprandial triglyceride testing in healthy subjects: a meta-analysis. Curr Vasc Pharmacol. 2011;9(3):271-280.10.2174/15701611179549553021314631 Search in Google Scholar

22. Samson CE, Galia AL, Llave KI, Zacarias MB, Mercado-Asis LB. Postprandial Peaking and Plateauing of Triglycerides and VLDL in Patients with Underlying Cardiovascular Diseases Despite Treatment. Int J Endocrinol metab. 2012; 10(4): 587-93.10.5812/ijem.4783369363823843828 Search in Google Scholar

23. Bravo E, Napolitano M, Botham KM. Postprandial lipid metabolism: the missing link between life-style habits and the increasing incidence of metabolic diseases in western countries? Open Translational Medicine Journal. 2010;2:1–1310.2174/1876399501002010001 Search in Google Scholar

24. Ivanova EA, Orekhov AN. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy. J Immunol Res. 2016;016:4789279.10.1155/2016/4789279 Search in Google Scholar

25. Shive CL, Jiang W, Anthony DD, Lederman MM. Soluble CD14 is a nonspecific marker of monocyte activation. AIDS. 2015;29(10):1263-1265.10.1097/QAD.0000000000000735445295926035325 Search in Google Scholar

26. Zalai CV, Kolodziejczyk MD, Pilarski L, et al. Increased circulating monocyte activation in patients with unstable coronary syndromes. J Am Coll Cardiol. 2001;38(5):1340-1347.10.1016/S0735-1097(01)01570-411691505 Search in Google Scholar

27. Alipour A, van Oostrom AJ, Izraeljan A, et al. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol. 2008;28(4):792-797.10.1161/ATVBAHA.107.15974918218988 Search in Google Scholar

28. Kiefer J, Zeller J, Bogner B, et al. An Unbiased Flow Cytometry-Based Approach to Assess Subset-Specific Circulating Monocyte Activation and Cytokine Profile in Whole Blood. Front Immunol. 2021;12:641224.10.3389/fimmu.2021.641224810869933981302 Search in Google Scholar

29. Jackson WD, Weinrich TW, Woollard KJ. Very-low and low-density lipoproteins induce neutral lipid accumulation and impair migration in monocyte subsets. Sci Rep. 2016;6:20038.10.1038/srep20038473182326821597 Search in Google Scholar

30. Khan IM, Pokharel Y, Dadu RT, et al. Postprandial Monocyte Activation in Individuals With Metabolic Syndrome. J Clin Endocrinol Metab. 2016;101(11):4195-4204.10.1210/jc.2016-2732509523627575945 Search in Google Scholar

31. Schirmer SH, Werner CM, Binder SB, et al. Effects of omega-3 fatty acids on postprandial triglycerides and monocyte activation. Atherosclerosis. 2012;225(1):166-172.10.1016/j.atherosclerosis.2012.09.00223017356 Search in Google Scholar

32. Henning AL, Venable AS, Vingren JL, Hill DW, McFarlin BK. Consumption of a high-fat meal was associated with an increase in monocyte adhesion molecules, scavenger receptors, and Propensity to Form Foam Cells, Cytometry B Clin Cytom, 2018;94:606-612.10.1002/cyto.b.21478 Search in Google Scholar

33. Wong KL, Tai JJ, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16-31.10.1182/blood-2010-12-32635521653326 Search in Google Scholar

34. Rahman MS, Murphy AJ, Woollard KJ. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat Rev Cardiol. 2017;14(7):387-400.10.1038/nrcardio.2017.3428300081 Search in Google Scholar

35. Ghattas A, Griffiths HR, Devitt A, Lip GY, Shantsila E. Monocytes in coronary artery disease and atherosclerosis: where are we now?. J Am Coll Cardiol. 2013;62(17):1541-51.10.1016/j.jacc.2013.07.04323973684 Search in Google Scholar

36. Patel AA, Zhang Y, Fullerton JN, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214(7): 1913-192310.1084/jem.20170355550243628606987 Search in Google Scholar

37. Thomas G, Tacke R, Hedrick CC, Hanna RN. Nonclassical patrolling monocyte function in the vasculature. Arterioscler Thromb Vasc Biol. 2015;35(6):1306-1316.10.1161/ATVBAHA.114.304650444155025838429 Search in Google Scholar

38. Williams H, Mack CD, Li SCH, Fletcher JP, Medbury HJ. Nature versus Number: Monocytes in Cardiovascular Disease. Int J Mol Sci. 2021;22(17):911910.3390/ijms22179119843046834502027 Search in Google Scholar

39. Cappellari R, D’Anna M, Bonora BM, et al. Shift of monocyte subsets along their continuum predicts cardiovascular outcomes. Atherosclerosis. 2017;266:95-102.10.1016/j.atherosclerosis.2017.09.03229017104 Search in Google Scholar

eISSN:
2668-7763
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other