1. bookVolume 66 (2020): Issue 3 (September 2020)
Journal Details
License
Format
Journal
eISSN
2668-7763
First Published
13 Aug 2013
Publication timeframe
6 times per year
Languages
English
access type Open Access

Controls in Real-Time Polymerase Chain Reaction Based Techniques

Published Online: 29 Sep 2020
Volume & Issue: Volume 66 (2020) - Issue 3 (September 2020)
Page range: 79 - 82
Received: 17 Aug 2020
Accepted: 06 Sep 2020
Journal Details
License
Format
Journal
eISSN
2668-7763
First Published
13 Aug 2013
Publication timeframe
6 times per year
Languages
English
Abstract

From its discovery in the 1980s, Polymerase chain reaction was further developed and is nowadays used as the foundation for the various PCR-based techniques used in molecular diagnosis across different species, and numerous types of samples. Real-Time PCR enables the user to monitor the amplification of a deoxyribonucleic acid (DNA) or complementary DNA (cDNA) target during the PCR run, in real-time, and not at the end, as it is the case in conventional PCR. The most frequent types of applications include gene expression analysis, gene silencing, variant analysis, and fusion temperature analysis. Given its vast field of application, a key question remains, and it is related to the controls (negative controls, positive controls, internal exogenous and endogenous controls) and their purpose in a Real-Time PCR experiment. In this paper, we set out to find how and when to use them, and which type of controls are suitable for certain experiment types, since the use of appropriate controls during Real-Time PCR experiments will reduce the effects of variables aside from the independent variable within the sample, therefore yielding accurate results, be it in research or diagnostic purposes.

Keywords

1. Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science (80- ). 1985 Dec 20;230(4732):1350–4.10.1126/science.29999802999980Search in Google Scholar

2. Pavón MÁ, López-Calleja IM, González I, Martín R, García T. Targeting conserved genes in Alternaria species. In: Methods in Molecular Biology. Humana Press Inc.; 2017. p. 123–9.10.1007/978-1-4939-6707-0_627924533Search in Google Scholar

3. Bustin SA, Benes V, Garson JA, et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem. 2009 Apr 1;55(4):611–22.10.1373/clinchem.2008.11279719246619Search in Google Scholar

4. Bustin SA, Wittwer CT. MIQE: A Step Toward More Robust and Reproducible Quantitative PCR. Clin Chem. 2017 Sep 1;63(9):1537–8.10.1373/clinchem.2016.26895328606913Search in Google Scholar

5. Witte AK, Sickha R, Mester P, Fister S, Schoder D, Rossmanith P. Essential role of polymerases for assay performance – Impact of polymerase replacement in a well-established assay. Biomol Detect Quantif. 2018 Dec 1;16:12–20.10.1016/j.bdq.2018.10.002628753730560063Search in Google Scholar

6. Mojtahedi M, Fouquier D’h´Eroü El A, Huang S. Direct elicitation of template concentration from quantification cycle (C q ) distributions in digital PCR. Nucleic Acids Res. 2014;42:126.10.1093/nar/gku603417634525104023Search in Google Scholar

7. Czurda S, Smelik S, Preuner-Stix S, Nogueira F, Lion T. Occurrence of fungal DNA contamination in PCR reagents: Approaches to control and decontamination. J Clin Microbiol. 2016 Jan 1;54(1):148–52.10.1128/JCM.02112-15470271226560539Search in Google Scholar

8. Buzard GS, Baker D, Wolcott MJ, Norwood DA, Dauphin LA. Multi-platform comparison of ten commercial master mixes for probe-based real-time polymerase chain reaction detection of bioterrorism threat agents for surge preparedness. Forensic Sci Int. 2012 Nov 30;223(1–3):292-7.10.1016/j.forsciint.2012.10.00323107058Search in Google Scholar

9. Johnston AD, Lu J, Ru K lin, Korbie D, Trau M. PrimerROC: accurate condition-independent dimer prediction using ROC analysis. Sci Rep. 2019 Dec 1;9(1):1–14.10.1038/s41598-018-36612-9633877130659212Search in Google Scholar

10. Laible M, Schlombs K, Kaiser K, et al. Technical validation of an RT-qPCR in vitro diagnostic test system for the determination of breast cancer molecular subtypes by quantification of ERBB2, ESR1, PGR and MKI67 mRNA levels from formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. 2016 Jul 7;16(1):398.10.1186/s12885-016-2476-x493630027389414Search in Google Scholar

11. Abbott RealTime SARS-CoV-2 Assay (EUA), [Internet]. Available from: molecular.abbott.com, [Accessed 25 July 2020].Search in Google Scholar

12. Cobas® SARS-CoV-2 Test, [Internet]. Available from: diagnostics.roche.com, [Accessed 25 July 2020].Search in Google Scholar

13. TaqPath COVID-19 CE-IVD RT-PCR Kit Frequently Asked Questions, Version 1.0, [Internet]. Available from: thermofisher.com, [Accessed 25 July 2020].sSearch in Google Scholar

14. Picard-Meyer E, Peytavin de Garam C, Schereffer JL, Robardet E, Cliquet F. Evaluation of six TaqMan RT-rtPCR kits on two thermocyclers for the reliable detection of rabies virus RNA. J Vet Diagnostic Investig. 2019 Jan 12;31(1):47–57.10.1177/1040638718818223650576730541405Search in Google Scholar

15. Pavšič J, Žel J, Milavec M. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification. Anal Bioanal Chem. 2016 Jan 31;408(1):107–21.10.1007/s00216-015-9107-2470684626521179Search in Google Scholar

16. Lion T. Current recommendations for positive controls in RT-PCR assays. Leukemia. 2001 Jul 19;15(7):1033–7.10.1038/sj.leu.240213311455970Search in Google Scholar

17. Ruhanya V, Jacobs GB, Glashoff RH, Engelbrecht S. Clinical relevance of total HIV DNA in peripheral blood mononuclear cell compartments as a biomarker of HIV-associated neurocognitive disorders (HAND). Vol. 9, Viruses. MDPI AG; 2017. p. 324.10.3390/v9110324570753129088095Search in Google Scholar

18. Gomez LF, Torres IP, Del Pilar M, et al. Detection of Histoplasma capsulatum in Organic Fertilizers by Hc100 Nested Polymerase Chain Reaction and Its Correlation with the Physicochemical and Microbiological Characteristics of the Samples. Am J Trop Med Hyg. 2018;98(5):1303–12.10.4269/ajtmh.17-0214595335229532772Search in Google Scholar

19. Wagner EM. Monitoring gene expression: Quantitative real-time RT-PCR. Methods Mol Biol. 2013;1027:19–45.10.1007/978-1-60327-369-5_223912981Search in Google Scholar

20. Buckwalter SP, Sloan LM, Cunningham SA, et al. Inhibition controls for qualitative real-time PCR assays: Are they necessary for all specimen matrices? J Clin Microbiol. 2014 Jun 1;52(6):2139–43.10.1128/JCM.03389-13404277524740078Search in Google Scholar

21. Roux G, Ravel C, Varlet-Marie E, Jendrowiak R, Bastien P, Sterkers Y. Inhibition of polymerase chain reaction: Pathogen-specific controls are better than human gene amplification. Marangoni A, editor. PLoS One. 2019 Sep 27;14(9):e0219276.10.1371/journal.pone.0219276676467731560697Search in Google Scholar

22. Miranda JA, Steward GF. Variables influencing the efficiency and interpretation of reverse transcription quantitative PCR (RT-qPCR): An empirical study using Bacteriophage MS2. J Virol Methods. 2017 Mar 1;241:1–10.10.1016/j.jviromet.2016.12.00227940257Search in Google Scholar

23. Liu J, Gratz J, Amour C, et al. Optimization of Quantitative PCR Methods for Enteropathogen Detection. Chan KH, editor. PLoS One. 2016 Jun 23;11(6):e0158199.10.1371/journal.pone.0158199491895227336160Search in Google Scholar

24. Aralar A, Yuan Y, Chen K, et al. Improving quantitative power in digital PCR through digital high-resolution melting. J Clin Microbiol. 2020 Jun 1;58(6).10.1128/JCM.00325-20726939432295887Search in Google Scholar

25. Schwaber J, Andersen S, Nielsen L. Shedding light: The importance of reverse transcription efficiency standards in data interpretation. Biomol Detect Quantif. 2019;17:100077.10.1016/j.bdq.2018.12.002637495030805297Search in Google Scholar

26. De Spiegelaere W, Dern-Wieloch J, Weigel R, et al. Reference Gene Validation for RT-qPCR, a Note on Different Available Software Packages. Cotterill S, editor. PLoS One. 2015 Mar 31;10(3):e0122515.10.1371/journal.pone.0122515438043925825906Search in Google Scholar

27. Pharo HD, Andresen K, Berg KCG, Lothe RA, Jeanmougin M, Lind GE. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR. Clin Epigenetics. 2018 Feb 21;10(1):24.10.1186/s13148-018-0456-5582255829484034Search in Google Scholar

28. Neduvat AC, Murthy PM, Sundarrajan S, Padmanabhan S. Use of coagulation factor XIII (F13) gene as an internal control for normalization of genomic DNA’s for HLA typing. MethodsX. 2018 Jan 1;5:881–9.10.1016/j.mex.2018.07.020610788930151348Search in Google Scholar

29. Caracausi M, Piovesan A, Antonaros F, Strippoli P, Vitale L, Pelleri MC. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies. Mol Med Rep. 2017 Sep 1;16(3):2397–410.10.3892/mmr.2017.6944554805028713914Search in Google Scholar

30. Glöckner FO, Yilmaz P, Quast C, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. Vol. 261, Journal of Biotechnology. Elsevier B.V.; 2017. p. 169–76.10.1016/j.jbiotec.2017.06.119828648396Search in Google Scholar

31. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002 Jun 18;3(7):research0034.1.10.1186/gb-2002-3-7-research003412623912184808Search in Google Scholar

32. Mestdagh P, Van Vlierberghe P, De Weer A, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009 Jun 16;10(6):R64.10.1186/gb-2009-10-6-r64271849819531210Search in Google Scholar

33. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004 Mar;26(6):509–15.10.1023/B:BILE.0000019559.84305.47Search in Google Scholar

34. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004 Aug 1;64(15):5245–50.10.1158/0008-5472.CAN-04-049615289330Search in Google Scholar

35. Hruz T, Wyss M, Docquier M, et al. RefGenes: Identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics. 2011 Mar 21;12(1):156.10.1186/1471-2164-12-156307295821418615Search in Google Scholar

36. Gao Z, Deng W, Zhu F. Reference gene selection for quantitative gene expression analysis in black soldier fly (Hermetia illucens). Bhat SA, editor. PLoS One. 2019 Aug 16;14(8):e0221420.10.1371/journal.pone.0221420669732931419256Search in Google Scholar

37. Leal MF, Belangero PS, Figueiredo EA, et al. Identification of Suitable Reference Genes for Gene Expression Studies in Tendons from Patients with Rotator Cuff Tear. Datti A, editor. PLoS One. 2015 Mar 13;10(3):e0118821.10.1371/journal.pone.0118821435892125768100Search in Google Scholar

38. Rho HW, Lee BC, Choi ES, Choi IJ, Lee YS, Goh SH. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR. BMC Cancer. 2010 May 28;10(1):240.10.1186/1471-2407-10-240288740320507635Search in Google Scholar

39. Montero-Melendez T, Perretti M. Gapdh gene expression is modulated by inflammatory arthritis and is not suitable for qPCR normalization. Inflammation. 2014 Feb 4;37(4):1059–69.10.1007/s10753-014-9829-x24493325Search in Google Scholar

40. Al-Sabah A, Stadnik P, Gilbert SJ, Duance VC, Blain EJ. Importance of reference gene selection for articular cartilage mechanobiology studies. Osteoarthr Cartil. 2016 Apr 1;24(4):719–30.10.1016/j.joca.2015.11.007481945126585242Search in Google Scholar

41. Lee EJ, Schmittgen TD. Comparison of RNA assay methods used to normalize cDNA for quantitative real-time PCR. Anal Biochem. 2006;357:299–301.10.1016/j.ab.2006.06.01116930526Search in Google Scholar

42. Ho-Pun-Cheung A, Cellier D, Lopez-Crapez E. La RT-qPCR en oncologïe: Considérations pour la normalisation. Vol. 66, Annales de Biologie Clinique. Ann Biol Clin (Paris); 2008. p. 121–9.Search in Google Scholar

43. Libus J, Štorchová H. Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. Biotechniques. 2006 Aug 21;41(2):156–64.10.2144/00011223216925017Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo