Cite

1. van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241-7.10.1016/j.jacc.2011.08.02522078432Search in Google Scholar

2. Ishikawa T, Iwashima S, Ohishi A, Nakagawa Y, Ohzeki T. Prevalence of congenital heart disease assessed by echocardiography in 2067 consecutive newborns. Acta Paediatr. 2011;100(8):e55-60.10.1111/j.1651-2227.2011.02248.x21362039Search in Google Scholar

3. Kelly RG. The second heart field. Curr Top Dev Biol. 2012;100:33-65.10.1016/B978-0-12-387786-4.00002-622449840Search in Google Scholar

4. Spicer DE, Hsu HH, Co-Vu J, Anderson RH, Fricker FJ. Ventricular septal defect. Orphanet J Rare Dis. 2014;9:144.10.1186/s13023-014-0144-2431665825523232Search in Google Scholar

5. Corno A. Atrioventricular septal defect. Congenital Heart Defects. Springer-Verlag Berlin Heidelberg 2003;25–32.10.1007/978-3-642-57358-3_5Search in Google Scholar

6. Edwards JJ, Gelb BD. Genetics of congenital heart disease. Curr Opin Cardiol. 2016;31(3):235–241.10.1097/HCO.0000000000000274486850426872209Search in Google Scholar

7. Cowan JR, Ware SM. Genetics and genetic testing in congenital heart disease. Clin Perinatol. 2015;42(2):373-93.10.1016/j.clp.2015.02.00926042910Search in Google Scholar

8. Jin SC, Homsy J, Zaidi S, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49(11):1593-1601.10.1038/ng.3970567500028991257Search in Google Scholar

9. An Y, Duan W, Huang G, et al. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population. BMC Med Genomics. 2016;9:2.10.1186/s12920-015-0163-4470561626742958Search in Google Scholar

10. Du L, Xie HN, Li LJ, Zhu YX, Lin MF, Zheng J. [Association between fetal ventricular septal defects and chromosomal abnormalities].Zhonghua Fu Chan Ke Za Zhi. 2013;48(11):805-9.Search in Google Scholar

11. Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z. GATA4 mutations in 486 Chinese patients with congenital heart disease. Eur J Med Genet. 2008;51(6):527-35.10.1016/j.ejmg.2008.06.00518672102Search in Google Scholar

12. Jacobs JP, O’Brien SM, Pasquali SK, et al. Variation in outcomes for benchmark operations: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg. 2011;92(6):2184-91.10.1016/j.athoracsur.2011.06.008326375522115229Search in Google Scholar

13. Mirzaei M, Mirzaei S, Sepahvand E, Rahmanian Koshkaki A, Kargar Jahromi M. Evaluation of Complications of Heart Surgery in Children With Congenital Heart Disease at Dena Hospital of Shiraz. Glob J Health Sci. 2015 Aug 23;8(5):33-8.10.5539/gjhs.v8n5p33487722626652092Search in Google Scholar

14. Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the Understanding of the Genetic Determinants of Congenital Heart Disease and Their Impact on Clinical Outcomes. J Am Heart Assoc. 2018;7(6): e006906.10.1161/JAHA.117.006906590753729523523Search in Google Scholar

15. Dobreanu M, Oprea OR. Laboratory medicine in the era of precision medicine – dream or reality?. Rev Romana Med Lab. 2019;27(2):115-24.10.2478/rrlm-2019-0025Search in Google Scholar

16. Lazăr A, Georgescu AM, Vitin A, Azamfirei L. Precision Medicine and its Role in the Treatment of Sepsis: A Personalised View. J Crit Care Med (Targu Mures). 2019;5(3):90-96.10.2478/jccm-2019-0017669807431431921Search in Google Scholar

17. Marin TM, Keith K, Davies B, et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest. 2011;121(3):1026-43.10.1172/JCI44972304937721339643Search in Google Scholar

18. Crauciuc A, Tripon F, Gheorghiu A, Nemes G, Boglis A, Banescu C. Development, Applications, Benefits, Challenges and Limitations of the New Genome Engineering Technique. An Update Study. Acta Medica Marisiensis. 2017;63(1):4-9.10.1515/amma-2017-0007Search in Google Scholar

19. Richards RM, Sotillo E, Majzner RG. CAR T Cell Therapy for Neuroblastoma. Front Immunol. 2018;9:2380.10.3389/fimmu.2018.02380623277830459759Search in Google Scholar

20. Ye F, Setozaki S, Kowalski J, et al. Progress in the Generation of Multiple Lineage Human-iPSC-Derived 3D-Engineered Cardiac Tissues for Cardiac Repair. In: Nakanishi T., Baldwin H., Fineman J., Yamagishi H. (eds) Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension. Springer, Singapore. 2020:353-361.10.1007/978-981-15-1185-1_54Search in Google Scholar

21. Jacinto FV, Link W, Ferreira BI. CRISPR/Cas9-mediated Genome Editing: From Basic Research to Translational Medicine. J Cell Mol Med. 2020;24(7):3766-3778.10.1111/jcmm.14916717140232096600Search in Google Scholar

22. Tripon F, Crauciuc GA, Moldovan VG, Bogliș A, Benedek IJ, Lázár E, et al. Simultaneous FLT3, NPM1 and DNMT3A mutations in adult patients with acute myeloid leukemia – case study. Rev Romana Med Lab. 2019;27(3):245-54.10.2478/rrlm-2019-0022Search in Google Scholar

23. Pierpont ME, Brueckner M, Chung WK, et al. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation. 2018;138(21):e653-e711.10.1161/CIR.0000000000000606655576930571578Search in Google Scholar

24. Maslen CL, Babcock D, Robinson SW, et al. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome. Am J Med Genet A. 2006;140(22):2501-5.10.1002/ajmg.a.3149417036335Search in Google Scholar

25. Levy M, Eyries M, Szezepanski I, et al. Genetic analyses in a cohort of children with pulmonary hypertension. Eur Respir J. 2016;48(4):1118-1126.10.1183/13993003.00211-201627587546Search in Google Scholar

26. Courtens W, Wauters J, Wojciechowski M, et al. A de novo subtelomeric monosomy 11q (11q24.2-qter) and trisomy 20q (20q13.3-qter) in a girl with findings compatible with Jacobsen syndrome: case report and review. Clin Dysmorphol. 2007;16(4):231-9.10.1097/MCD.0b013e328274230317786114Search in Google Scholar

27. Favier R, Akshoomoff N, Mattson S, Grossfeld P. Jacobsen syndrome: Advances in our knowledge of phenotype and genotype. Am J Med Genet C Semin Med Genet. 2015;169(3):239-50.10.1002/ajmg.c.3144826285164Search in Google Scholar

28. Bunduki V, Zugaib M. Atlas of Fetal Ultrasound. Fetal Aneuploidies. Springer, Cham 2017;211-235.10.1007/978-3-319-54798-5_17Search in Google Scholar

29. Cai M, Huang H, Su L, et al. Chromosomal abnormalities and copy number variations in fetal ventricular septal defects.Mol Cytogenet. 2018;11:58.10.1186/s13039-018-0408-y626405230519285Search in Google Scholar

30. Carey AS, Liang L, Edwards J, et al. Effect of copy number variants on outcomes for infants with single ventricle heart defects. Circ Cardiovasc Genet. 2013;6(5):444-51.10.1161/CIRCGENETICS.113.000189398796624021551Search in Google Scholar

31. Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the Understanding of the Genetic Determinants of Congenital Heart Disease and Their Impact on Clinical Outcomes. J Am Heart Assoc. 2018;7(6). pii: e006906.10.1161/JAHA.117.006906590753729523523Search in Google Scholar

32. Jordan VK, Zaveri HP, Scott DA. 1p36 deletion syndrome: an update. Appl Clin Genet. 2015;8:189–200.Search in Google Scholar

33. Pierpont ME, Basson CT, Benson DW Jr. et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115(23):3015-38.10.1161/CIRCULATIONAHA.106.18305617519398Search in Google Scholar

34. McElhinney DB, Driscoll DA, Levin ER, Jawad AF, Emanuel BS, Goldmuntz E. Chromosome 22q11 deletion in patients with ventricular septal defect: frequency and associated cardiovascular anomalies. Pediatrics. 2003;112(6 Pt 1):e472.10.1542/peds.112.6.e47214654648Search in Google Scholar

35. Deshpande A, Weiss LA. Recurrent reciprocal copy number variants: Roles and rules in neurodevelopmental disorders. Dev Neurobiol. 2018;78(5):519-530.10.1002/dneu.2258729575775Search in Google Scholar

36. Costain G, Silversides CK, Bassett AS. The importance of copy number variation in congenital heart disease. NPJ Genom Med. 2016;1:16031.10.1038/npjgenmed.2016.31550572828706735Search in Google Scholar

37. Bernier R, Steinman KJ, Reilly B, et al. Clinical phenotype of the recurrent 1q21.1 copy-number variant. Genet Med. 2016;18(4):341-9.10.1038/gim.2015.78726304426066539Search in Google Scholar

38. Guida V, Ferese R, Rocchetti M, et al. A variant in the carboxyl-terminus of connexin 40 alters GAP junctions and increases risk for tetralogy of Fallot. Eur J Hum Genet. 2013;21(1):69-75.10.1038/ejhg.2012.109353325822713807Search in Google Scholar

39. Saliba A, Figueiredo ACV, Baroneza JE, et al. Genetic and Genomics in Congenital Heart Disease: A Clinical Review. J Pediatr (Rio J). 2019:S0021-7557(19)30443-7.Search in Google Scholar

40. Turnpenny PD, Ellard S. Alagille syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. 2012;20(3): 251–257.10.1038/ejhg.2011.181328317221934706Search in Google Scholar

41. Lu F, Morrissette JJ, Spinner NB. Conditional JAG1 Mutation Shows the Developing Heart Is More Sensitive Than Developing Liver to JAG1 Dosage. Am J Hum Genet. 2003;72(4):1065–1070.10.1086/374386118033912649809Search in Google Scholar

42. Tsai EA, Gilbert MA, Grochowski CM, et al. THBS2 Is a Candidate Modifier of Liver Disease Severity in Alagille Syndrome.Cell Mol Gastroenterol Hepatol. 2016;2(5):663-675.10.1016/j.jcmgh.2016.05.013504288828090565Search in Google Scholar

43. McDermott DA, Bressan MC, He J, et al. TBX5 genetic testing validates strict clinical criteria for Holt-Oram syndrome. Pediatr Res. 2005;58(5):981-6.10.1203/01.PDR.0000182593.95441.6416183809Search in Google Scholar

44. Barisic I, Boban L, Greenlees R, et al. Holt Oram syndrome: a registry-based study in Europe. Orphanet J Rare Dis. 2014;9:156.10.1186/s13023-014-0156-y424518325344219Search in Google Scholar

45. Nyboe D, Kreiborg S, Darvann T, Dunø M, Nissen KR, Hove HB. A study of familial Char syndrome involving the TFAP2B gene with a focus on facial shape characteristics.Clin Dysmorphol. 2018;27(3):71-77.10.1097/MCD.000000000000022229683802Search in Google Scholar

46. Massaad E, Tfayli H, Awwad J, Nabulsi M, Farra C. Char Syndrome a novel mutation and new insights: A clinical report. Eur J Med Genet. 2018. pii: S1769-7212(18)30785-7.Search in Google Scholar

47. Nyboe D, Kreiborg S, Darvann T, Dunø M, Nissen KR, Hove HB. A study of familial Char syndrome involving the TFAP2B gene with a focus on facial shape characteristics. Clin Dysmorphol. 2018;27(3):71-77.10.1097/MCD.0000000000000222Search in Google Scholar

48. van Ravenswaaij-Arts CMA, Blake K, Martin DM. Support for the Diagnosis of CHARGE Syndrome. JAMA Otolaryngol Head Neck Surg. 2017;143(6):634-635.10.1001/jamaoto.2016.476228241200Search in Google Scholar

49. Corsten-Janssen N, van Ravenswaaij-Arts CMA, Kapusta L. Congenital arch vessel anomalies in CHARGE syndrome: A frequent feature with risk for co-morbidity. Int J Cardiol Heart Vasc. 2016;12:21-25.10.1016/j.ijcha.2016.05.015545415328616537Search in Google Scholar

50. Corsten-Janssen N, Kerstjens-Frederikse WS, du Marchie Sarvaas GJ, et al. The cardiac phenotype in patients with a CHD7 mutation. Circ Cardiovasc Genet. 2013;6(3):248-54.10.1161/CIRCGENETICS.113.00005423677905Search in Google Scholar

51. Digilio MC, Gnazzo M, Lepri F. et al. Congenital heart defects in molecularly proven Kabuki syndrome patients. Am J Med Genet A. 2017;173(11):2912-2922.10.1002/ajmg.a.3841728884922Search in Google Scholar

52. Yoon JK, Ahn KJ, Kwon BS, et al. The strong association of left-side heart anomalies with Kabuki syndrome. Korean J Pediatr. 2015;58(7):256-62.10.3345/kjp.2015.58.7.256454318526300940Search in Google Scholar

53. Tartaglia M, Cordeddu V, Chang H, et al. Paternal germline origin and sex-ratio distortion in transmission of PTPN11 mutations in Noonan syndrome.Am J Hum Genet. 2004;75(3):492-7.10.1086/423493118202715248152Search in Google Scholar

54. Ramond F, Duband S, Croisille P, et al. Expanding the cardiac spectrum of Noonan syndrome with RIT1 variant: Left main coronary artery atresia causing sudden death. Eur J Med Genet. 2017;60(6):299-302.10.1016/j.ejmg.2017.03.00928347726Search in Google Scholar

55. Roberts AE, Araki T, Swanson KD, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet. 2007;39(1):70-4.10.1038/ng192617143285Search in Google Scholar

56. Ayerza Casas A, Puisac Uriol B, Teresa Rodrigo ME, Hernández Marcos M, Ramos Fuentes FJ, Pie Juste J. Cornelia De Lange Syndrome: Congenital Heart Disease in 149 Patients. Med Clin (Barc). 2017 Oct 11;149(7):300-302.10.1016/j.medcle.2017.03.024Search in Google Scholar

57. Yuan SM. Congenital Heart Defects in Williams Syndrome. Turk J Pediatr. 2017;59(3):225-232.10.24953/turkjped.2017.03.00129376566Search in Google Scholar

58. Bardawil T, Khalil S, Bergqvist C, et al. Genetics of Inherited Cardiocutaneous Syndromes: A Review. Open Heart. 2016 Nov 22;3(2):e000442.10.1136/openhrt-2016-000442513340327933191Search in Google Scholar

59. Fergelot P, Van Belzen M, Van Gils J, et al. Phenotype and Genotype in 52 Patients With Rubinstein-Taybi Syndrome Caused by EP300 Mutations. Am J Med Genet A. 2016 Dec;170(12):3069-3082.10.1002/ajmg.a.3794027648933Search in Google Scholar

60. Barisic I, Boban L, Akhmedzhanova D, et al. Beckwith Wiedemann Syndrome: A Population-Based Study on Prevalence, Prenatal Diagnosis, Associated Anomalies and Survival in Europe. Eur J Med Genet 2018 Sep;61(9):499-507.10.1016/j.ejmg.2018.05.01429753922Search in Google Scholar

61. Prosnitz AR, Leopold J, Irons M, Jenkins K, Roberts AE. Pulmonary Vein Stenosis in Patients With Smith-Lemli-Opitz Syndrome. Congenit Heart Dis. 2017 Jul;12(4):475-483.10.1111/chd.12471582518228719049Search in Google Scholar

62. Accogli A, Traverso M, Madia F, et al. A Novel Xp22.13 Microdeletion in Nance-Horan Syndrome. Birth Defects Res. 2017 Jul 3;109(11):866-868.10.1002/bdr2.103228464487Search in Google Scholar

63. Muntean I, Togănel R, Benedek T. Genetics of Congenital Heart Disease: Past and Present. Biochem Genet. 2017;55(2):105-123.10.1007/s10528-016-9780-727807680Search in Google Scholar

64. Pang S, Liu Y, Zhao Z, Huang W, Chen D, Yan B. Novel and functional sequence variants within the TBX2 gene promoter in ventricular septal defects. Biochimie. 2013;95(9):1807-9.10.1016/j.biochi.2013.05.00723727221Search in Google Scholar

65. De Bock M, Kerrebrouck M, Wang N, Leybaert L. Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system? Front Pharmacol. 2013;4:120.Search in Google Scholar

66. Izumi K, Lippa AM, Wilkens A, Feret HA, McDonald-McGinn DM, Zackai EH. c Am J Med Genet A. 2013;161A(12):3150-4.10.1002/ajmg.a.3615924115525Search in Google Scholar

67. Wang B, Wen Q, Xie X, et al. Mutation analysis of Connexon43 gene in Chinese patients with congenital heart defects. Int J Cardiol. 2010;145(3):487-9.10.1016/j.ijcard.2009.06.02619615768Search in Google Scholar

68. Zaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498(7453):220-3.10.1038/nature12141370662923665959Search in Google Scholar

69. Huang RT, Wang J, Xue S. et al. TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. Int J Med Sci. 2017;14(4):323-332.10.7150/ijms.17834543647428553164Search in Google Scholar

70. Yoshida A, Morisaki H, Nakaji M, et al. Genetic mutation analysis in Japanese patients with non-syndromic congenital heart disease. J Hum Genet. 2016;61(2):157-62.10.1038/jhg.2015.12626490186Search in Google Scholar

71. Chen J, Qi B, Zhao J, Liu W, Duan R, Zhang M. A novel mutation of GATA4 (K300T) associated with familial atrial septal defect. Gene. 2016;575(2 Pt 2):473-477.10.1016/j.gene.2015.09.02126376067Search in Google Scholar

72. Han H, Chen Y, Liu G, Han Z, Zhao Z, Tang Y. GATA4 transgenic mice as an in vivo model of congenital heart disease. Int J Mol Med. 2015;35(6):1545-53.10.3892/ijmm.2015.2178443292525873328Search in Google Scholar

73. Kodo K, Nishizawa T, Furutani M, et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci U S A. 2009;106(33):13933-8.10.1073/pnas.0904744106272899819666519Search in Google Scholar

74. Allen HL, Flanagan SE, Shaw-Smith C. et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet. 2011;44(1):20-22.10.1038/ng.1035406296222158542Search in Google Scholar

75. Xu M, Wu X, Li Y, et al. CITED2 mutation and methylation in children with congenital heart disease. J Biomed Sci. 2014;21:7.10.1186/1423-0127-21-7391753524456003Search in Google Scholar

76. Behiry EG, Al-Azzouny MA, Sabry D, Behairy OG, Salem NE. Association of NKX2-5, GATA4, and TBX5 Polymorphisms With Congenital Heart Disease in Egyptian Children. Mol Genet Genomic Med. 2019 May;7(5):e612.10.1002/mgg3.612650302630834692Search in Google Scholar

77. Bogliș A, Tripon F, Bănescu C. The utility of molecular genetic techniques in craniosynostosis cases associated with intellectual disability. Rev Romana Med Lab. 2018;26(4):471-7.10.2478/rrlm-2018-0033Search in Google Scholar

78. Bănescu C. Do we really need genetic tests in current practice?. Rev Romana Med Lab. 2019;27(1):9-14.10.2478/rrlm-2019-0010Search in Google Scholar

79. Kelle AM, Qureshi MY, Olson TM, Eidem BW, O’Leary PW. Familial Incidence of Cardiovascular Malformations in Hypoplastic Left Heart Syndrome. Am J Cardiol. 2015;116(11):1762-6.10.1016/j.amjcard.2015.08.04526433269Search in Google Scholar

80. Ito S, Chapman KA, Kisling M, John AS. Appropriate Use of Genetic Testing in Congenital Heart Disease Patients. Curr Cardiol Rep. 2017;19(3):24.10.1007/s11886-017-0834-128224467Search in Google Scholar

81. Monteiro RAC, de Freitas ML, Vianna GS, et al. Major Contribution of Genomic Copy Number Variation in Syndromic Congenital Heart Disease: The Use of MLPA as the First Genetic Test. Mol Syndromol. 2017;8(5):227-235.10.1159/000477226558252128878606Search in Google Scholar

82. Crauciuc GA, Tripon F, Bogliș A, Făgărășan A, Bănescu C. Multiplex ligation dependent probe amplification - A useful, fast and cost-effective method for identification of small supernumerary marker chromosome in children with developmental delay and congenital heart defect. Rev Romana Med Lab. 2018;26(4):461-70.10.2478/rrlm-2018-0032Search in Google Scholar

83. Homsy J, Zaidi S, Shen Y, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350(6265):1262-6.10.1126/science.aac9396489014626785492Search in Google Scholar

eISSN:
2247-6113
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other