Open Access

A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space–Fractional Gross–Pitaevskii Equation

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
New Perspectives in Nonlinear and Intelligent Control (In Honor of Alexander P. Kurdyukov) (special section, pp. 629-712), Julio B. Clempner, Enso Ikonen, Alexander P. Kurdyukov (Eds.)

Cite

Alikhanov, A.A. (2015). A new difference scheme for the time fractional diffusion equation, Journal of Computational Physics280: 424–438.10.1016/j.jcp.2014.09.031Search in Google Scholar

Alves, C.O. and Miyagaki, O.H. (2016). Existence and concentration of solution for a class of fractional elliptic equation in ℝn via penalization method, Calculus of Variations and Partial Differential Equations55(3): 47.10.1007/s00526-016-0983-xSearch in Google Scholar

Antoine, X., Tang, Q. and Zhang, Y. (2016). On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross–Pitaevskii equations with rotation term and nonlocal nonlinear interactions, Journal of Computational Physics325: 74–97.10.1016/j.jcp.2016.08.009Search in Google Scholar

Bao, W. and Cai, Y. (2013). Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation, Mathematics of Computation82(281): 99–128.10.1090/S0025-5718-2012-02617-2Search in Google Scholar

Ben-Yu, G., Pascual, P.J., Rodriguez, M.J. and Vázquez, L. (1986). Numerical solution of the sine-Gordon equation, Applied Mathematics and Computation18(1): 1–14.10.1016/0096-3003(86)90025-1Search in Google Scholar

Bhrawy, A.H. and Abdelkawy, M.A. (2015). A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, Journal of Computational Physics294: 462–483.10.1016/j.jcp.2015.03.063Search in Google Scholar

El-Ajou, A., Arqub, O.A. and Momani, S. (2015). Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: A new iterative algorithm, Journal of Computational Physics293: 81–95.10.1016/j.jcp.2014.08.004Search in Google Scholar

Fei, Z. and Vázquez, L. (1991). Two energy conserving numerical schemes for the sine-Gordon equation, Applied Mathematics and Computation45(1): 17–30.10.1016/0096-3003(91)90087-4Search in Google Scholar

Furihata, D. (2001). Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, Journal of Computational and Applied Mathematics134(1): 37–57.10.1016/S0377-0427(00)00527-6Search in Google Scholar

Glöckle, W.G. and Nonnenmacher, T.F. (1995). A fractional calculus approach to self-similar protein dynamics, Biophysical Journal68(1): 46–53.10.1016/S0006-3495(95)80157-8Search in Google Scholar

Gross, E.P. (1961). Structure of a quantized vortex in boson systems, Il Nuovo Cimento (1955-1965)20(3): 454–477.10.1007/BF02731494Search in Google Scholar

Iannizzotto, A., Liu, S., Perera, K. and Squassina, M. (2016). Existence results for fractional p-Laplacian problems via Morse theory, Advances in Calculus of Variations9(2): 101–125.10.1515/acv-2014-0024Search in Google Scholar

Kaczorek, T. (2015). Positivity and linearization of a class of nonlinear continuous-time systems by state feedbacks, International Journal of Applied Mathematics and Computer Science25(4): 827–831, DOI: 10.1515/amcs-2015-0059.10.1515/amcs-2015-0059Open DOISearch in Google Scholar

Koeller, R. (1984). Applications of fractional calculus to the theory of viscoelasticity, ASME Transactions: Journal of Applied Mechanics51: 299–307.10.1115/1.3167616Search in Google Scholar

Liu, F., Zhuang, P., Turner, I., Anh, V. and Burrage, K. (2015). A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain, Journal of Computational Physics293: 252–263.10.1016/j.jcp.2014.06.001Search in Google Scholar

Macías-Díaz, J.E. (2017). A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives, Journal of Computational Physics351: 40–58.10.1016/j.jcp.2017.09.028Search in Google Scholar

Macías-Díaz, J.E. (2018). An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions, Communications in Nonlinear Science and Numerical Simulation59: 67–87.10.1016/j.cnsns.2017.10.019Search in Google Scholar

Macías-Díaz, J.E. (2019). On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme, International Journal of Computer Mathematics96(2): 337–361.10.1080/00207160.2018.1438605Search in Google Scholar

Matsuo, T. and Furihata, D. (2001). Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, Journal of Computational Physics171(2): 425–447.10.1006/jcph.2001.6775Search in Google Scholar

Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics, IMA Journal of Applied Mathematics25(3): 241–265.10.1093/imamat/25.3.241Search in Google Scholar

Oprz˛edkiewicz, K., Gawin, E. and Mitkowski, W. (2016). Modeling heat distribution with the use of a non-integer order, state space model, International Journal of Applied Mathematics and Computer Science26(4): 749–756, DOI: 10.1515/amcs-2016-0052.10.1515/amcs-2016-0052Open DOISearch in Google Scholar

Pimenov, V.G. and Hendy, A.S. (2017). A numerical solution for a class of time fractional diffusion equations with delay, International Journal of Applied Mathematics and Computer Science27(3): 477–488, DOI: 10.1515/amcs-2017-0033.10.1515/amcs-2017-0033Open DOISearch in Google Scholar

Pimenov, V.G., Hendy, A.S. and De Staelen, R.H. (2017). On a class of non-linear delay distributed order fractional diffusion equations, Journal of Computational and Applied Mathematics318: 433–443.10.1016/j.cam.2016.02.039Search in Google Scholar

Pitaevskii, L. (1961). Vortex lines in an imperfect Bose gas, Soviet Physics JETP13(2): 451–454.Search in Google Scholar

Povstenko, Y. (2009). Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Physica Scripta2009(T136): 014017.10.1088/0031-8949/2009/T136/014017Search in Google Scholar

Rakkiyappan, R., Cao, J. and Velmurugan, G. (2015). Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays, IEEE Transactions on Neural Networks and Learning Systems26(1): 84–97.10.1109/TNNLS.2014.2311099Search in Google Scholar

Raman, C., Köhl, M., Onofrio, R., Durfee, D., Kuklewicz, C., Hadzibabic, Z. and Ketterle, W. (1999). Evidence for a critical velocity in a Bose–Einstein condensed gas, Physical Review Letters83(13): 2502.10.1103/PhysRevLett.83.2502Search in Google Scholar

Scalas, E., Gorenflo, R. and Mainardi, F. (2000). Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and Its Applications284(1): 376–384.10.1016/S0378-4371(00)00255-7Search in Google Scholar

Strauss, W. and Vazquez, L. (1978). Numerical solution of a nonlinear Klein–Gordon equation, Journal of Computational Physics28(2): 271–278.10.1016/0021-9991(78)90038-4Search in Google Scholar

Su, N., Nelson, P.N. and Connor, S. (2015). The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests, Journal of Hydrology529(3): 1262–1273.10.1016/j.jhydrol.2015.09.033Search in Google Scholar

Tang, Y.-F., Vázquez, L., Zhang, F. and Pérez-García, V. (1996). Symplectic methods for the nonlinear Schrödinger equation, Computers & Mathematics with Applications32(5): 73–83.10.1016/0898-1221(96)00136-8Search in Google Scholar

Tarasov, V.E. (2006). Continuous limit of discrete systems with long-range interaction, Journal of Physics A: Mathematical and General39(48): 14895.10.1088/0305-4470/39/48/005Search in Google Scholar

Tarasov, V.E. and Zaslavsky, G.M. (2008). Conservation laws and HamiltonâĂŹs equations for systems with long-range interaction and memory, Communications in Nonlinear Science and Numerical Simulation13(9): 1860–1878.10.1016/j.cnsns.2007.05.017Search in Google Scholar

Tian, W., Zhou, H. and Deng, W. (2015). A class of second order difference approximations for solving space fractional diffusion equations, Mathematics of Computation84(294): 1703–1727.10.1090/S0025-5718-2015-02917-2Search in Google Scholar

Wang, P., Huang, C. and Zhao, L. (2016). Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, Journal of Computational and Applied Mathematics306: 231–247.10.1016/j.cam.2016.04.017Search in Google Scholar

Wang, T., Jiang, J. and Xue, X. (2018). Unconditional and optimal H1 error estimate of a Crank–Nicolson finite difference scheme for the Gross–Pitaevskii equation with an angular momentum rotation term, Journal of Mathematical Analysis and Applications459(2): 945–958.10.1016/j.jmaa.2017.10.073Search in Google Scholar

Wang, T. and Zhao, X. (2014). Optimal l error estimates of finite difference methods for the coupled Gross–Pitaevskii equations in high dimensions, Science China Mathematics57(10): 2189–2214.10.1007/s11425-014-4773-7Search in Google Scholar

Ye, H., Liu, F. and Anh, V. (2015). Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, Journal of Computational Physics298: 652–660.10.1016/j.jcp.2015.06.025Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics