1. bookVolume 29 (2019): Issue 1 (March 2019)
    Exploring Complex and Big Data (special section, pp. 7-91), Johann Gamper, Robert Wrembel (Eds.)
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English
Open Access

Synchronization of fractional–order discrete–time chaotic systems by an exact delayed state reconstructor: Application to secure communication

Published Online: 29 Mar 2019
Volume & Issue: Volume 29 (2019) - Issue 1 (March 2019) - Exploring Complex and Big Data (special section, pp. 7-91), Johann Gamper, Robert Wrembel (Eds.)
Page range: 179 - 194
Received: 03 Jan 2018
Accepted: 18 Oct 2018
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English

Abdeljawad, T. and Baleanu, D. (2009). Fractional differences and integration by parts, Journal of Computational Analysis and Applications13(3): 981–989.Search in Google Scholar

Agrawal, S., Srivastava, M. and Das, S. (2012). Synchronization of fractional-order chaotic systems using active control method, Chaos Solitons & Fractals45(6): 737–752.10.1016/j.chaos.2012.02.004Search in Google Scholar

Albertini, F. and D’Alessandro, D. (1996). Remarks on the observability of nonlinear discrete time systems, in J. Doležal and J. Fidler (Eds.), System Modelling and Optimization, Springer, Boston, MA, pp. 155–162.10.1007/978-0-387-34897-1_16Search in Google Scholar

Albertini, F. and D’Alessandro, D. (2002). Observability and forward-backward observability of discrete-time nonlinear systems, Mathematics of Control, Signals, and Systems15(4): 275–290.10.1007/s004980200011Search in Google Scholar

Atici, F. and Eloe, P.W. (2007). Fractional q-calculus on a time scale, Journal of Nonlinear Mathematical Physics14(3): 333–344.10.2991/jnmp.2007.14.3.4Search in Google Scholar

Atici, F. and Eloe, P.W. (2009). Initial value problems in discrete fractional calculus, Proceedings of the American Mathematical Society13(4): 981–989.10.1090/S0002-9939-08-09626-3Search in Google Scholar

Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.10.2478/v10006-012-0039-0Open DOISearch in Google Scholar

Barbot, J.P., Djemai, M. and Boukhobza, T. (2002). Sliding mode observers, in W. Perruquetti and J.-P. Barbot (Eds.), Sliding-Mode Control in Engineering, CRC Press, New York, NY, pp. 103–130.Search in Google Scholar

Bastos, N.R.O., Ferreira, R.A.C. and Torres, D.F.M. (2011a). Discrete-time fractional variational problems, Signal Processing91(3): 513–524.10.1016/j.sigpro.2010.05.001Search in Google Scholar

Bastos, N.R.O., Ferreira, R.A.C. and Torres, D.F.M. (2011b). Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete and Continuous Dynamical Systems29(2): 417–437.10.3934/dcds.2011.29.417Search in Google Scholar

Belmouhoub, I., Djemai, M. and Barbot, J.-P. (2003). An example of nonlinear discrete-time synchronization of chaotic systems for secure communications, European Control Conference (ECC), Cambridge, UK, pp. 3478–3483.Search in Google Scholar

Buslowicz, M. (2008). Stability of linear continuous-time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Science56(4): 319–324.Search in Google Scholar

Chen, F., Luo, X. and Zhou, Y. (2011). Existence results for nonlinear fractional difference equations, Advances in Difference Equations, Article ID: 713201, DOI: 10.1155/2011/713201.10.1155/2011/713201Search in Google Scholar

Djemai, M., Barbot, P. and Belmouhoub, I. (2009). Discrete time normal form for left invertibility problem, European Journal of Control15(2): 194–204.10.3166/ejc.15.194-204Search in Google Scholar

Dzieliński, A. (2016). Optimal control for discrete fractional systems, in A. Babiarz et al. (Eds.), Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, Vol. 407, Springer International Publishing, Cham, pp. 175–185.Search in Google Scholar

Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional state-space systems, Journal of Vibration and Control14(9–10): 1543–1556.10.1177/1077546307087431Search in Google Scholar

Eckmann, J.P. and Ruelle, D. (1985). Ergodic theory of chaos and strange attractors, Review of Modern Physics57(3): 617–656.10.1103/RevModPhys.57.617Search in Google Scholar

Edelman, M. (2018). On the stability of fixed points and chaos in fractional systems, Chaos28(023112): 023112-1–023112-9.10.1063/1.5016437Search in Google Scholar

Feki, M., Robert, B., Gelle, G. and Colas, M. (2003). Secure digital communication using discrete-time chaos synchronization, Chaos, Solitons and Fractals18(4): 881–890.10.1016/S0960-0779(03)00065-1Search in Google Scholar

Ferreira, R.A.C. and Torres, D.F.M. (2011). Fractional h-difference equations arising from the calculus of variations, Applicable Analysis and Discrete Mathematics5(1): 110–121.10.2298/AADM110131002FSearch in Google Scholar

Guermah, S., Djennoune, S. and Bettayeb, M. (2008a). Asymptotic stability and practical stability of linear discrete-time fractional order systems, 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara, Turkey.10.1007/978-90-481-3293-5_11Search in Google Scholar

Guermah, S., Djennoune, S. and Bettayeb, M. (2008b). Controllability and observability of linear discrete-time fractional-order systems, International Journal of Applied Mathematics and Computer Science18(2): 213–222, DOI: 10.2478/v10006-008-0019-6.10.2478/v10006-008-0019-6Open DOISearch in Google Scholar

Hanba, S. (1982). Further results on the uniform observability of discrete-time nonlinear systems, IEEE Transactions on Automatic Control55(4): 1034–1038.10.1109/TAC.2010.2041983Search in Google Scholar

Hénon, M. (1976). A two-dimensional mapping with a strange attractor, Communications in Mathematical Physics50(1): 69–77.10.1007/BF01608556Search in Google Scholar

Holm, M. (2011). The Laplace transform in discrete fractional calculus, Computers & Mathematics with Applications62(3): 1591–1601.10.1016/j.camwa.2011.04.019Search in Google Scholar

Jakubczyk, B. and Sontag, E. (1990). Controllability of nonlinear discrete time systems: A Lie-algebraic approach, SIAM Journal of Control and Optimization28(1): 1–33.10.1137/0328001Search in Google Scholar

Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science26(2): 277–283, DOI: 10.1515/amcs-2016-0019.10.1515/amcs-2016-0019Open DOISearch in Google Scholar

Khanzadeh, A. and Pourgholi, M. (2016). Robust synchronization of fractional-order chaotic systems at a pre-specified time using sliding mode controller with time-varying switching surfaces, Chaos Solitons & Fractals91: 69–77.10.1016/j.chaos.2016.05.007Search in Google Scholar

Liao, X., Gao, Z. and Huang, H. (2013). Synchronization control of fractional-order discrete-time chaotic systems, European Control Conference (ECC), Zürich, Switzerland, pp. 2214–2219.Search in Google Scholar

Liu, Y. (2014). Discrete chaos in fractional Hénon maps, International Journal of Nonlinear Science18(3): 170–175.Search in Google Scholar

Luo, C. and Wang, X. (2013). Chaos generated from the fractional-order Chen system and its application to digital secure communication, International Journal of Modern Physics C24(4): 1350025.10.1142/S0129183113500253Search in Google Scholar

Magin, R.L. (2004). Fractional Calculus in Bioengineering, Begell House Publishers, Danbury, CT.Search in Google Scholar

Miller, K. and Ross, B. (1989). Fractional difference calculus, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Koriyama, Japan, pp. 139–152.Search in Google Scholar

Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.Y. and Feliu, Y. (2010). Fractional-Order Systems and Control: Fundamentals and Applications, Springer-Verlag, London.10.1007/978-1-84996-335-0Search in Google Scholar

Mozyrska, D. and Bartosiewicz, Z. (2010). On observability concepts for nonlinear discrete-time fractional order control systems, in D. Baleanu et al. (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications, Springer International Publishing, Cham, pp. 305–312.Search in Google Scholar

Mozyrska, D., Girejko, E. and Wyrwas, M. (2013a). Comparison of h-difference fractional operators, in W. Mitkowski et al. (Eds.), Advances in the Theory and Applications of noninteger Order Systems, Springer International Publishing, Cham, pp. 191–197.10.1007/978-3-319-00933-9_17Search in Google Scholar

Mozyrska, D. and Pawłuszewicz, E. (2010). Observability of linear q-difference fractional-order systems with finite initial memory, Bulletin of the Polish Academy of Sciences: Technical Sciences58(4): 601–605.10.2478/v10175-010-0061-zSearch in Google Scholar

Mozyrska, D. and Pawłuszewicz, E. (2011). Linear q-difference fractional order systems with finite memory, Acta Mechanica and Automatica5(2): 69–73.Search in Google Scholar

Mozyrska, D. and Pawłuszewicz, E. (2012). Fractional discrete-time linear control systems with initialisation, International Journal of Control85(2): 213–219.10.1080/00207179.2011.643413Search in Google Scholar

Mozyrska, D., Pawłuszewicz, E., and Wyrwas, M. (2013b). Observability of h-difference linear control systems with two fractional orders, 14th International Carpathian Control Conference (ICCC-2013), Rytro, Poland, pp. 292–296.10.1109/CarpathianCC.2013.6560556Search in Google Scholar

Mozyrska, D., Pawłuszewicz, E. and Wyrwas, M. (2015). The h-difference approach to controllability and observability of fractional linear systems with Caputo-type operator, Asian Journal of Control17(4): 1163–1173.10.1002/asjc.1034Search in Google Scholar

Munkhammar, J. (2013). Chaos in a fractional order logistic map, Fractional Calculus and Applied Analysis16(3): 511–519.10.2478/s13540-013-0033-8Search in Google Scholar

N’Doye, I., Darouach, M., Voos, H. and Zasadzinski, M. (2016). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science23(3): 491–500, DOI: 10.2478/amcs-2013-0037.10.2478/amcs-2013-0037Open DOISearch in Google Scholar

Nijmeijer, H. and Mareels, I.M.Y. (1997). An observer looks at synchronization, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications44(10): 882–890.10.1109/81.633877Search in Google Scholar

Nijmeijer, M. (1982). Observability of discrete time nonlinear systems: A geometric approach, International Journal of Control36(5): 865–871.10.1080/00207178208932936Search in Google Scholar

Ortigueira, M.D. (2000). Introduction to fractional linear systems. Part 2: Discrete-time case, IEE Proceedings: Vision Image and Signal Processing14(1): 62–70.Search in Google Scholar

Orue, A.B., Fernandex, V., Alvarez, G., Pastor, G., Romera, M., Li, S. and Montoy, F. (2008). Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems, Physics Letters A372(34): 5588–5592.10.1016/j.physleta.2008.06.066Search in Google Scholar

Pareek, N., Patidar, V. and Sud, K. (2006). Image encryption using chaotic logistic map, Image and Vision Computing24(9): 926–934.10.1016/j.imavis.2006.02.021Search in Google Scholar

Pawłuszewicz, E. and Mozyrska, D. (2013). Local controllability of nonlinear discrete-time fractional order systems, Bulletin of the Polish Academy of Sciences: Technical Sciences61(1): 251–256.10.2478/bpasts-2013-0024Search in Google Scholar

Pecora, L. and Carroll, T. (1990). Synchronization in chaotic systems, Physical Review Letters64(8): 821–825.10.1103/PhysRevLett.64.82110042089Search in Google Scholar

Peng, G.J., Jiang, Y.L. and Chen, F. (2014). Generalized projective synchronization of fractional-order chaotic systems, Physica A: Statistical Mechanics and Its Applications387(14): 3738–3746.10.1016/j.physa.2008.02.057Search in Google Scholar

Petras, I. (2011). Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation, Springer, Dordrecht.10.1007/978-3-642-18101-6_3Search in Google Scholar

Podlubny, I. (1998). Fractional Differential Equation, Academic Press, New York, NY.Search in Google Scholar

Podlubny, I. (2003). Geometric and physical interpretation of fractional integral and fractional derivatives, Journal of Fractional Calculus5(4): 367–386.Search in Google Scholar

Richter, H. (2002). The generalized Hénon maps: Examples for higher dimensional chaos, International Journal of Bifurcation and Chaos12(6): 1371–1381.10.1142/S0218127402005121Search in Google Scholar

Sabatier, J., Agrawal, O. and Machado, J.T. (2008). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Berlin.10.1007/978-1-4020-6042-7Search in Google Scholar

Shao, S., Chen, M. and Yan, X. (2016). Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance, Nonlinear Dynamics83(4): 1855–1866.10.1007/s11071-015-2450-1Search in Google Scholar

Sharma, V., Agrawal, V., Sharma, B.B. and Nath, R. (2016). Unknown input nonlinear observer design for continuous and discrete time systems with input recovery scheme, Nonlinear Dynamics85(1): 645–658.10.1007/s11071-016-2713-5Search in Google Scholar

Sira-Ramirez, H., Aguilar-Ibaaez, C. and Suarez-Castaan, M. (2002). Exact state reconstruction in the recovery of messages encrypted by the state of nonlinear discrete-time chaotic systems, International Journal of Bifurcation and Chaos12(1): 169–177.10.1142/S0218127402004243Search in Google Scholar

Sira-Ramirez, H. and Rouchon, P. (2001). Exact state reconstructors in nonlinear discrete-time systems control, European Union Nonlinear Control Network Workshop, Sheffield, UK.Search in Google Scholar

Tarasov, V.E. (2010). Fractional Zaslavsky and Hénon discrete maps, in C.J. Luo and V. Afraimovich (Eds.), Longrange Interaction, Stochasticity and Fractional Dynamics, Springer, Berlin/Heidelberg, pp. 1–26.10.1007/978-3-642-12343-6_1Search in Google Scholar

Trujillo, J.J. and Ungureanu, V.M. (2018). Optimal control of discrete-time linear fractional order systems with multiplicative noise, International Journal of Control91(1): 57–69.10.1080/00207179.2016.1266520Search in Google Scholar

Wolf, A., Swith, J.B., Swinney, H.L. and Vastano, J.A. (1985). Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena16(3): 285–317.10.1016/0167-2789(85)90011-9Search in Google Scholar

Wu, G. and Baleanu, D. (2014a). Chaos synchronization of the discrete fractional logistic map, Signal Processing102: 96–99.10.1016/j.sigpro.2014.02.022Search in Google Scholar

Wu, G. and Baleanu, D. (2014b). Discrete fractional logistic map and its chaos, Nonlinear Dynamics75(1–2): 283–287.10.1007/s11071-013-1065-7Search in Google Scholar

Wu, G.-C. and Baleanu, D. (2015). Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps, Communication in Nonlinear Sciences and Numerical Simulation22(1–3): 95–100.10.1016/j.cnsns.2014.06.042Search in Google Scholar

Wu, G.-C., Baleanu, D. and Lin, Z.-X. (2016). Image encryption technique based on fractional chaotic time series, Journal of Vibration and Control22(8): 2092–2099.10.1177/1077546315574649Search in Google Scholar

Wua, G.C., Baleanu, D., Xie, H.-P. and Chen, F.-L. (2016). Chaos synchronization of fractional chaotic maps based on the stability condition, Physica A: Statistical Mechanics and Its Applications460: 374–383.10.1016/j.physa.2016.05.045Search in Google Scholar

Wyrwas, M., Pawłuszewicz, E. and Girejko, E. (2015). Stability of nonlinear h-difference systems with n fractional orders, Kybernetika51(1): 112–136.10.14736/kyb-2015-1-0112Search in Google Scholar

Xi, H.L., Yu, S.M., Zhang, R.X. and Xu, L. (2014). Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems, Optik, International Journal for Light and Electron Optics125(9): 2036–2040.10.1016/j.ijleo.2013.12.002Search in Google Scholar

Zhen, W., Xia, H., Ning, L. and Xiao-Na, S. (2012). Image encryption based on a delayed fractional-order chaotic logistic system, Chinese Physics B21(5): 050506.10.1088/1674-1056/21/5/050506Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo